Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene,
CdDHN4
, were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses (
Cynodon dactylon
L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of
CdDHN4
was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of
CdDHN4
to ABA and the expression of
CdDHN4
under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the
CdDHN4
gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical
cis
elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that
CdDHN4
is regulated by an ABA-dependent signal pathway and that the high sensitivity of
CdDHN4
to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.
SUMMARY
A SK3‐type dehydrin MsDHN1 was cloned from alfalfa (Medicago sativa L.). Its function and gene regulatory pathways were studied via overexpression and suppression of MsDHN1 in alfalfa seedlings or hairy roots. The results showed that MsDHN1 is a typical intrinsically disordered protein that exists in the form of monomers and homodimers in alfalfa. The plant growth rates increased as a result of MsDHN1 overexpression (MsDHN1‐OE) and decreased upon MsDHN1 suppression (MsDHN1‐RNAi) in seedlings or hairy roots of alfalfa compared with the wild‐type or the vector line under Al stress. MsDHN1 interacting with aquaporin (AQP) MsPIP2;1 and MsTIP1;1 positively affected oxalate secretion from root tips and Al accumulation in root tips. MsABF2 was proven to be an upstream transcription factor of MsDHN1 and activated MsDHN1 expression by binding to the ABRE element of the MsDHN1 promoter. The transcriptional regulation of MsABF2 on MsDHN1 was dependent on the abscisic acid signaling pathway. These results indicate that MsDHN1 can increase alfalfa tolerance to Al stress via increasing oxalate secretion from root tips, which may involve in the interaction of MsDHN1 with two AQP.
Alfalfa is a good green manure source, but its effect on rice growth has not been fully elucidated. Two green manure species, alfalfa and broad bean (Vicia faba L.), and two N fertilizer levels, alone or combination, were applied to a rice field. The results indicated that alfalfa had more pronounced effects on increasing soil labile phosphorus (P) fractions (including NaHCO3-Pi, NaOH-Pi), P uptake and soil enzyme activities (dehydrogenase, urease, acid phosphatase and β-glucosidase) than broad bean and N fertilizer. The transformation of NaHCO3-Po to labile P regulated by alfalfa played a significant direct and indirect effect on grain yield. Although a much lower N input from alfalfa addition, a similar grain yield with N fertilizer treatment was achieved, and the integration of alfalfa with N fertilizer produced the highest grain yield and P availability, which was associated with the highest urease, acid phosphatase and β-glucosidase activity in soil. These results indicate that alfalfa green manure had a great ability of increasing grain yield through enhancing P availability in rice paddy, which could give us a way to reduce N fertilizer application by enhancing P availability.
BackgroundDehydrins play positive roles in regulating plant abiotic stress responses. The objective of this study was to characterize two dehydrin genes, CdDHN4-L and CdDHN4-S, generated by alternative splicing of CdDHN4 in bermudagrass.ResultsOverexpression of CdDHN4-L with φ-segment and CdDHN4-S lacking of φ-segment in Arabidopsis significantly increased tolerance against abiotic stresses. The growth phenotype of Arabidopsis exposed to NaCl at 100 mM was better in plants overexpressing CdDHN4-L than those overexpressing CdDHN4-S, as well as better in E.coli cells overexpressing CdDHN4-L than those overexpressing CdDHN4-S in 300 and 400 mM NaCl, and under extreme temperature conditions at − 20 °C and 50 °C. The CdDHN4-L had higher disordered characterization on structures than CdDHN4-S at temperatures from 10 to 90 °C. The recovery activities of lactic dehydrogenase (LDH) and alcohol dehydrogenase (ADH) in presence of CdDHN4-L and CdDHN4-S were higher than that of LDH and ADH alone under freeze-thaw damage and heat. Protein-binding and bimolecular fluorescence complementation showed that both proteins could bind to proteins with positive isoelectric point via electrostatic forces.ConclusionsThese results indicate that CdDHN4-L has higher protective ability against abiotic stresses due to its higher flexible unfolded structure and thermostability in comparison with CdDHN4-S. These provided direct evidence of the function of the φ-segment in dehydrins for protecting plants against abiotic stress and to show the electrostatic interaction between dehydrins and client proteins.Electronic supplementary materialThe online version of this article (10.1186/s12870-018-1511-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.