ABSTRACT1. The European Water Framework Directive requires the determination of ecological status in European fresh and saline waters. This is to be through the establishment of a typology of surface water bodies, the determination of reference (high status) conditions in each element (ecotype) of the typology and of lower grades of status (good, moderate, poor and bad) for each ecotype. It then requires classification of the status of the water bodies and their restoration to at least 'good status' in a specified period.2. Though there are many methods for assessing water quality, none has the scope of that defined in the Directive. The provisions of the Directive require a wide range of variables to be measured and give only general guidance as to how systems of classification should be established. This raises issues of comparability across States and of the costs of making the determinations.3. Using expert workshops and subsequent field testing, a practicable pan-European typology and classification system has been developed for shallow lakes, which can easily be extended to all lakes. It is parsimonious in its choice of determinands, but based on current limnological understanding and therefore as cost-effective as possible.4. A core typology is described, which can be expanded easily in particular States to meet local conditions. The core includes 48 ecotypes across the entire European climate gradient and incorporates climate, lake area, geology of the catchment and conductivity.5. The classification system is founded on a liberal interpretation of Annexes in the Directive and uses variables that are inexpensive to measure and ecologically relevant. The need for taxonomic expertise is minimized.6. The scheme has been through eight iterations, two of which were tested in the field on tranches of 66 lakes. The final version, Version 8, is offered for operational testing and further refinement by statutory authorities.
The European eel's singular spawning migration from European waters towards the Sargasso Sea remains elusive, including the early phase of migration at sea. During spawning migration, the movement of freshwater resident eels from river to sea has been thought to be irreversible. We report the first recorded incidents of eels returning to the river of origin after spending up to a year in the marine environment. After migrating to the Baltic Sea, 21% of the silver eels, tagged with acoustic transmitters, returned to the Narva River. Half returned 11–12 months after moving to the sea, with 15 km being the longest upstream movement. The returned eels spent up to 33 days in the river and migrated to the sea again. The fastest specimen migrated to the outlet of the Baltic Sea in 68 days after the second start—roughly 1300 km. The surprising occurrence of returning migrants has implications for sustainable management and protection of this critically endangered species.
The diel migration and spatial distribution of fish were explored using six sequential 4-h sample gillnettings in the pelagic and littoral zones of Lake Verevi (Estonia, 12.6 ha, max. depth 11 m, hard-water, deoxygenated hypolimnion) in August 2001 and July 2002. Considering abundance, two-thirds of the total fish moved to the littoral zone. The biomass of fish was distributed evenly between the littoral and pelagic zones, where the topmost epilimnion accounted for 80-85% leaving 10-15% for the lower epilimnion in the pelagic zone. Just above the thermocline only some large specimens of perch Perca fluviatilis (L.) and roach Rutilus rutilus (L.) (1-5%) during the daytime were captured. No fish movements were recorded under the thermocline. Rudd Scardinius erythrophtalmus (L.) inhabited only the littoral zone; all the other species were captured in both zones. Juvenile perch stayed in the littoral zone, whereas juvenile roach was caught in both zones and was active over a 24-h period. Piscivores, perch and pike Esox lucius L., were inactive in the dark. Perch inhabited mostly the littoral zone and the duration of its activity increased with age. In summer-stratified Lake Verevi, sharp change in the values of oxygen in the metalimnion along with species interaction affected the spatial distribution of fish, while diel migration was light-dependent.
The present study describes generally the ecosystem of Lake Verevi while more detailed approaches are presented in the same issue. The main task of the article is to estimate long-term changes and find the best method for the restoration of good ecological status. Lake Verevi (surface 12.6 ha, mean depth 3.6 m, maximum depth 11 m, drainage area 1.1 km 2 , water exchange 0.63-times per year) is a hypertrophic hardwater lake located in town Elva (6400 inhabitants). Long-term complex limnological investigations have taken place since 1929. The lake has been contaminated by irregular discharge of urban wastewaters from oxidation ponds since 1978, flood from streets, and infiltrated waters from the surrounding farms. The socalled spring meromixis occurred due to extremely warm springs in recent years. The index value of buffer capacity of Lake Verevi calculated from natural conditions is on the medium level. Water properties were analysed according to the requirements of the EU Water Framework Directive. According to the classification, water quality as a long-term average of surface layers is moderate-good, but the water quality of bottom layers is bad. Values in deeper layers usually exceed 20-30 times the calculated reference values by Vighi and ChiaudaniÕs model. Naturally, at the beginning of the 20th century the limnological type of the lake was moderately eutrophic. During the 1980s and 1990s the ecosystem was out of balance by abiotic characteristics as well as by plankton indicators. Rapid fluctuations of species composition and abundance can be found in recent years. Seasonal variations are considerable and species composition differs remarkably also in the water column. The dominating macrophyte species vary from year to year. Since the annual amount of precipitation from the atmosphere onto the lake surface is several times higher, the impact of swimmers could be considered irrelevant. Some restoration methods were discussed. The first step, stopping external pollution, was completed by damming the inlet. Drainage (siphoning) of the hypolimnetic water is discussed. Secondary pollution occurs because Fe:P values are below the threshold. The authors propose to use phosphorus precipitation and hypolimnetic aeration instead of siphoning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.