Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by dementia. The most characteristic pathological changes in AD brain include extracellular amyloid-β (Aβ) accumulation and neuronal loss. Particularly, cholinergic neurons in the nucleus basalis of Meynert are some of the first neuronal groups to degenerate; accumulating evidence suggests that Aβ oligomers are the primary form of neurotoxicity. Bacopa monniera is a traditional Indian memory enhancer whose extract has shown neuroprotective and Aβ-reducing effects. In this study, we explored the low molecular weight compounds from B. monniera extracts with an affinity to Aβ aggregates, including its oligomers, using Aβ oligomer-conjugated beads and identified plantainoside B. Plantainoside B exhibited evident neuroprotective effects by preventing Aβ attachment on the cell surface of human induced pluripotent stem cell (hiPSC)-derived cholinergic neurons. Moreover, it attenuated memory impairment in mice that received intrahippocampal Aβ injections. Furthermore, radioisotope experiments revealed that plantainoside B has affinity to Aβ aggregates including its oligomers and brain tissue from a mouse model of Aβ pathology. In addition, plantainoside B could delay the Aβ aggregation rate. Accordingly, plantainoside B may exert neuroprotective effects by binding to Aβ oligomers, thus interrupting the binding of Aβ oligomers to the cell surface. This suggests its potential application as a theranostics in AD, simultaneously diagnostic and therapeutic drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.