Abstract-While in the design of flexible pavement the significance of asphalt layers is understood, the role of granular layers supporting the asphalt layers should not be underestimated. The behavior of granular layers used in base, sub-base or subgrade layer of flexible pavement is complicated due to nonlinear elastoplastic response of materials subjected to dynamic load of traffic. Shakedown theory integrated with Mohr-Coulomb criterion is applied to simulate the response of granular layers to dynamic loading in a numerical analysis. The results of analysis is then compared to simple the results of modeling without considering shakedown effects and the conclusion is drawn.
The use of deep strength asphalt materials characterization to construct and restore the heavily urban roads where damage has been induced is rapidly grown in Western Australia. Five different types of asphalt mixes were produced in laboratory to modify pavement performance mixture. The main role of this research is to evaluate the pavement materials characterization for Western Australia road. In this study, laboratory test for tensile strength, resilient modulus, wheel tracking, binder contents, Marshall Compaction, and air voids contents test were taken to analyze each asphalt mixtures. The results indicated that AC20-75 and AC14-75 asphalt mixes blow were in a good pavement performance as compared to other asphalt mixes. For a mix design purposed, all the asphalt mixes that are used in this study can strength and stable the stiffness of pavement that is notable, and the modification effect rank can be described as AC20-75 Blow > AC14-75 Blow > AC14-50 Blow > AC7-50 Blow > SMA7-50 Blow in this research.
Full-depth asphalt concrete pavements are generally designed to control fatigue cracking and reduce potential rutting when subjected to repeated heavy traffic loads. A particular interesting question is whether a limit load exists below which excitation shakedown in the sense that the granular layer does not accumulate further deformation. Although pavement design guides give more weight to asphalt concrete layer failures, granular failure may not be ignored; especially for thin layers and/or heavy load. The behavior of granular layers used in base and, sub-base layers of flexible pavement is complicated due to its nonlinear elastoplastic response when subjected to dynamic traffic loading. The objective of this paper is to present a new simplified simulation model for the Shakedown behavior of granular layer in flexible pavement. This method is integrated with Mohr-Coulomb criterion, which is used and applied to simulate the response of unbound granular layers to dynamic loading in a numerical analysis. The results of analysis are then compared to simplify the results of modeling without considering shakedown effects and then, the conclusions are drawn.
The determination of appropriate pavement thickness using laboratory determined parameters is one of the key issues facing the road manager. Five different types of asphalt mixes were produced in laboratory to modify pavement performance mixture. The main objective of this study is to evaluate the characterization methods for fatigue performance of asphalt mixes to Western Australia road. In this study, laboratory test for indirect tensile modulus, dynamic creep, wheel tracking and aggregate gradation tests were taken to analyze each asphalt mixtures for a design traffic road. The results and analysis showed that AC20-75 asphalt mix blow is the most effective and efficient in pavement performance than the other asphalt mixes. AC14-75 was the second in rank to strengthen and durability of asphalt pavement. All asphalt mixes in this study can be used to strength and stable the overall stiffness of pavement, and modification rank can be described as AC20-75 Blow > AC14-75 Blow > AC14-50 Blow > AC7-50 Blow > SMA7-50 Blow in this research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.