Joint replacement surgery is associated with significant morbidity and mortality following infection with either methicillin-resistant Staphylococcus aureus (MRSA) or Staphylococcus epidermidis. These organisms have strong biofilm-forming capability in deep wounds and on prosthetic surfaces, with 10 3 -10 4 microbes resulting in clinically significant infections. To inhibit biofilm formation, we developed 3D titanium structures using selective laser melting and then coated them with a silver nanolayer using atomic layer deposition. On bare titanium scaffolds, S. epidermidis growth was slow but on silver-coated implants there were significant further reductions in both bacterial recovery (p < 0.0001) and biofilm formation (p < 0.001). MRSA growth was similarly slow on bare titanium scaffolds and not further affected by silver coating. Ultrastructural examination and viability assays using either human bone or endothelial cells, demonstrated strong adherence and growth on titanium-only or silver-coated implants. Histological, X-ray computed microtomographic, and ultrastructural analyses revealed that silver-coated titanium scaffolds implanted into 2.5 mm defects in rat tibia promoted robust vascularization and conspicuous bone ingrowth. We conclude that nanolayer silver of titanium implants significantly reduces pathogenic biofilm formation in vitro, facilitates vascularization and osseointegration in vivo making this a promising technique for clinical orthopedic applications.
Antimicrobial silver nanoparticle coatings have attracted interest for reducing prosthetic joint infection. However, few studies report in vivo investigations of the biotransformation of silver nanoparticles within the regenerating tissue and its impact on bone formation. We present a longitudinal investigation of the osseointegration of silver nanoparticle-coated additive manufactured titanium implants in rat tibial defects. Correlative imaging at different time points using nanoscale secondary ion mass spectrometry, transmission electron microscopy (TEM), histomorphometry, and 3D X-ray microcomputed tomography provided quantitative insight from the nano- to macroscales. The quality and quantity of newly formed bone is comparable between the uncoated and silver coated implants. The newly formed bone demonstrates a trabecular morphology with bone being located at the implant surface, and at a distance, at two weeks. Nanoscale elemental mapping of the bone-implant interface showed that silver was present primarily in the osseous tissue and colocalized with sulfur. TEM revealed silver sulfide nanoparticles in the newly regenerated bone, presenting strong evidence that the previously in vitro observed biotransformation of silver to silver sulfide occurs in vivo.
The architecture of bone scaffolds, such as pore dimensions, connectivity and orientation can regulate osteogenic defect repair, as can their rate of degradation. Synthetic bone grafts have historically been developed with a foam structures to mimic trabecular bone. Now, Additive Manufacturing techniques enable production of open and regular pore architectures with improved compressive strengths. Here, we compare two types of bioactive glass scaffolds, made of the highly degradable ICIE16 composition, with distinctively different architectures but matched interconnect sizes (~150 µm), produced via two different techniques: gel-cast foaming and direct ink writing. A rabbit lateral femoral defect model was used to compare the effect of their architecture on in vivo bone regeneration, relative to a defect only control group, after 4 and 10 weeks of implantation. 3D X-ray microcomputed tomography (micro-CT), correlated to histology and back-scatter electron microscopy (BS-SEM) permitted quantitative evaluation of new bone ingrowth and degradation of the scaffolds. Both foam and printed scaffolds showed equal or higher bone ingrowth compared to the control group. After 4 weeks, the foam group showed the highest osteogenesis, with 51% more bone ingrowth than the defect only controls, but after 10 weeks the defect treated with the printed scaffold had the most bone ingrowth (40% more than the empty defect). Energy dispersive X-ray (EDS) mapping revealed degradation of the glass and calcium-phosphate deposition. The foam group showed more rapid degradation than the printed group, due to higher total porosity (even though interconnected pore size was equivalent). The foam scaffold appeared to allow rapid bone ingrowth and cancellous bone formation, whereas the printed scaffold seemed to provoke corticallike bone formation, while remaining in place for longer than the 10 week study. While concave architectures promote initial bone ingrowth, the higher strength open pore channels of the printed scaffolds are beneficial for scaffolds made of highly degradable bioactive glasses.
A correlative imaging methodology was developed to accurately quantify bone formation in the complex lattice structure of additive manufactured implants. Micro computed tomography (μCT) and histomorphometry were combined, integrating the best features from both, while demonstrating the limitations of each imaging modality. This semi-automatic methodology registered each modality using a coarse graining technique to speed the registration of 2D histology sections to high resolution 3D μCT datasets. Once registered, histomorphometric qualitative and quantitative bone descriptors were directly correlated to 3D quantitative bone descriptors, such as bone ingrowth and bone contact. The correlative imaging allowed the significant volumetric shrinkage of histology sections to be quantified for the first time (~15 %). This technique demonstrated the importance of location of the histological section, demonstrating that up to a 30 % offset can be introduced. The results were used to quantitatively demonstrate the effectiveness of 3D printed titanium lattice implants.Electronic supplementary materialThe online version of this article (doi:10.1007/s10856-016-5721-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.