Abstract-Challenges for IoT-based forensic investigations include the increasing amount of objects of forensic interest, relevance of identified and collected devices, blurry network boundaries, and edgeless networks. As we look ahead to a world of expanding ubiquitous computing, the challenge of forensic processes such as data acquisition (logical and physical) and extraction and analysis of data grows in this space. Containing an IoT breach is increasingly challenging -evidence is no longer restricted to a PC or mobile device, but can be found in vehicles, RFID cards, and smart devices. Through the combination of cloud-native forensics with client-side forensics (forensics for companion devices), we can study and develop the connection to support practical digital investigations and tackle emerging challenges in digital forensics. With the IoT bringing investigative complexity, this enhances challenges for the Internet of Anything (IoA) era. IoA brings anything and everything "online" in a connectedness that generates an explosion of connected devices, from fridges, cars and drones, to smart swarms, smart grids and intelligent buildings. Research to identify methods for performing IoT-based digital forensic analysis is essential. The long-term goal is the development of digital forensic standards that can be used as part of overall IoT and IoA security and aid IoT-based investigations.
Recent advancements in the Internet of Things (IoT) has enabled the collection, processing, and analysis of various forms of data including the personal data from billions of objects to generate valuable knowledge, making more innovative services for its stakeholders. Yet, this paradigm continuously suffers from numerous security and privacy concerns mainly due to its massive scale, distributed nature, and scarcity of resources towards the edge of IoT networks. Interestingly, blockchain based techniques offer strong countermeasures to protect data from tampering while supporting the distributed nature of the IoT. However, the enormous amount of energy consumption required to verify each block of data make it difficult to use with resource-constrained IoT devices and with real-time IoT applications. Nevertheless, it can expose the privacy of the stakeholders due to its public ledger system even though it secures data from alterations. Edge computing approaches suggest a potential alternative to centralized processing in order to populate real-time applications at the edge and to reduce privacy concerns associated with cloud computing. Hence, this paper suggests the novel privacy preserving blockchain called TrustChain which combines the power of blockchains with trust concepts to eliminate issues associated with traditional blockchain architectures. This work investigates how TrustChain can be deployed in the edge computing environment with different levels of absorptions to eliminate delays and privacy concerns associated with centralized processing and to preserve the resources in IoT networks.
Summary The rapid proliferation of Internet of things (IoT) devices, such as smart meters and water valves, into industrial critical infrastructures and control systems has put stringent performance and scalability requirements on modern Supervisory Control and Data Acquisition (SCADA) systems. While cloud computing has enabled modern SCADA systems to cope with the increasing amount of data generated by sensors, actuators, and control devices, there has been a growing interest recently to deploy edge data centers in fog architectures to secure low‐latency and enhanced security for mission‐critical data. However, fog security and privacy for SCADA‐based IoT critical infrastructures remains an under‐researched area. To address this challenge, this contribution proposes a novel security “toolbox” to reinforce the integrity, security, and privacy of SCADA‐based IoT critical infrastructure at the fog layer. The toolbox incorporates a key feature: a cryptographic‐based access approach to the cloud services using identity‐based cryptography and signature schemes at the fog layer. We present the implementation details of a prototype for our proposed secure fog‐based platform and provide performance evaluation results to demonstrate the appropriateness of the proposed platform in a real‐world scenario. These results can pave the way toward the development of a more secure and trusted SCADA‐based IoT critical infrastructure, which is essential to counter cyber threats against next‐generation critical infrastructure and industrial control systems. The results from the experiments demonstrate a superior performance of the secure fog‐based platform, which is around 2.8 seconds when adding five virtual machines (VMs), 3.2 seconds when adding 10 VMs, and 112 seconds when adding 1000 VMs, compared to the multilevel user access control platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.