Scientific and clinical research have advanced the ability of healthcare professionals to more precisely define diseases and classify patients into different groups based on their likelihood of responding to a given treatment, and on their future risks. However, a significant gap remains between the delivery of stratified healthcare and personalization. The latter implies solutions that seek to treat each citizen as a truly unique individual, as opposed to a member of a group with whom they share common risks or health-related characteristics. Personalisation also implies an approach that takes into account personal characteristics and conditions of individuals. This paper investigates how these desirable attributes can be developed and introduces a holistic environment, the iHELP, that incorporates big data management and Artificial Intelligence (AI) approaches to enable the realization of datadriven pathways where awareness, care and decision support is provided based on person-centric early risk prediction, prevention and intervention measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.