Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that primarily affects females, resulting in severe cognitive and physical disabilities, and is one of the most prevalent causes of intellectual disability in females. More than fifty years after the first publication on Rett syndrome, and almost two decades since the first report linking RTT to the MECP2 gene, the research community’s effort is focused on obtaining a better understanding of the genetics and the complex biology of RTT and Rett-like phenotypes without MECP2 mutations. Herein, we review the current molecular genetic studies, which investigate the genetic causes of RTT or Rett-like phenotypes which overlap with other genetic disorders and document the swift evolution of the techniques and methodologies employed. This review also underlines the clinical and genetic heterogeneity of the Rett syndrome spectrum and provides an overview of the RTT-related genes described to date, many of which are involved in epigenetic gene regulation, neurotransmitter action or RNA transcription/translation. Finally, it discusses the importance of including both phenotypic and genetic diagnosis to provide proper genetic counselling from a patient’s perspective and the appropriate treatment.
MECP2 duplication syndrome (MDS) is an X‐linked neurodevelopmental disorder characterized by a severe to profound intellectual disability, early onset hypotonia and diverse psycho‐motor and behavioural features. To date, fewer than 200 cases have been published. We report the clinical and molecular characterization of a Spanish MDS cohort that included 19 boys and 2 girls. Clinical suspicions were confirmed by array comparative genomic hybridization and multiplex ligation‐dependent probe amplification (MLPA). Using, a custom in‐house MLPA assay, we performed a thorough study of the minimal duplicated region, from which we concluded a complete duplication of both MECP2 and IRAK1 was necessary for a correct MDS diagnosis, as patients with partial MECP2 duplications lacked some typical clinical traits present in other MDS patients. In addition, the duplication location may be related to phenotypic severity. This observation may provide a new approach for genotype‐phenotype correlations, and thus more personalized genetic counselling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.