A B S T R A C TEurycoma longifolia or Tongkat Ali is famous for its aphrodisiac property and the traditional uses range from tonic after childbirth to treating malaria. Phytochemical studies revealed the presence of bioactive compounds such as quassinoids, alkaloids, squalene derivatives, tirucallane-type triterpenes and biphenylneolignans. Existing research revealed that plant has potential to treat various diseases and to replace the current treatment. Purpose of this article is to evaluate and summarize the existing literatures concerning phytochemical, biological and toxicological studies of E. longifolia. It is expected that critical evaluation will be useful for researchers working on the potential role of E. longifolia in treating diseases or for product development.
The benefits of Eurycoma longifolia (Tongkat Ali, TA) for its aphrodisiac capabilities are well known and many products are marketed worldwide. Due to its popularity, the plant is being abused for promoting fake products. Therefore, there is a need for better testing of the markers required by authorities and responsible manufacturers. A low-molecular-weight protein has been studied for developing it as a testing marker. Two dimensional electrophoresis (2DE) (four spots were observed) was used for positive detection of proteins in an aqueous extract of TA root and the pronounced separation of a Coomassie-stained spot, subsequently referred to as Marker A. Consecutive chromatographic separations of the aqueous extract of TA led to the isolation of pure protein from Marker A. When this marker was used to test 46 TA-based products randomly selected from markets worldwide, in 20 of them, the results were found to be comparable to those obtained using the organic eurycomanone marker. The ranking of products from the highest quantity to the lowest observed to be ordered differently if compared for both markers. This is an expected outcome because Marker A was measured for its protein content and eurycomanone for its organic molecule. Marker A detection using 2DE is shown to be a useful tool to test products supplemented with E. longifolia root.
Synthetic surfactants are widely used in a wide array of cleaning products due to their ability in lowering the surface tension of water. These surfactants also come with bad effects on people's health and the environment. Plant-based surfactant, or saponin, is expected to produce the same desired effect of chemical surfactant, minus the negative effect. The purpose of the current research was to discover the surface-active properties of saponin extracted from Nephelium Lappaceum or rambutan leaves, relative to commercial surfactant, Tween 80, and SDS. Rambutan’s leaves were extracted by maceration technique and liquid-liquid extraction to remove proteins and lipids of the plant. The presence of saponin in crude rambutan leaves was verified by foam test, which showed positive results. The crude rambutan leaves extracts were further analyzed by FTIR, GC-MS, and LC-QTOF-MS. The surface-active test consisted of a wetting test and cleaning test. The results from the IR spectrum show the presence of functional groups of saponin; OH, C=O, C-H, C=C, then, C-O which indicates the glycosides linkages to sapogenins. The wetting time for leave extracts, SDS, and Tween 80 were 32.33s, 7.33s, and 17.62s respectively. The cleaning test of saponin fraction, SDS, and Tween 80 showed the percentage of 20.98, 80.40, and 37.3 respectively. Generally, Rambutan leaves extract showed promising, but lower surface activities compared to commercial surfactants. Considering that the saponin fraction was not yet in the purest or isolated form of a single compound, it can be said the potential can be further enhanced by further isolating a pure surface-active compound from the saponin fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.