BackgroundThe MYB proteins comprise one of the largest families of plant transcription factors, which are involved in various plant physiological and biochemical processes. Pineapple (Ananas comosus) is one of three most important tropical fruits worldwide. The completion of pineapple genome sequencing provides a great opportunity to investigate the organization and evolutionary traits of pineapple MYB genes at the genome-wide level.ResultsIn the present study, a total of 94 pineapple R2R3-MYB genes were identified and further phylogenetically classified into 26 subfamilies, as supported by the conserved gene structures and motif composition. Collinearity analysis indicated that the segmental duplication events played a crucial role in the expansion of pineapple MYB gene family. Further comparative phylogenetic analysis suggested that there have been functional divergences of MYB gene family during plant evolution. RNA-seq data from different tissues and developmental stages revealed distinct temporal and spatial expression profiles of the AcMYB genes. Further quantitative expression analysis showed the specific expression patterns of the selected putative stress-related AcMYB genes in response to distinct abiotic stress and hormonal treatments. The comprehensive expression analysis of the pineapple MYB genes, especially the tissue-preferential and stress-responsive genes, could provide valuable clues for further function characterization.ConclusionsIn this work, we systematically identified AcMYB genes by analyzing the pineapple genome sequence using a set of bioinformatics approaches. Our findings provide a global insight into the organization, phylogeny and expression patterns of the pineapple R2R3-MYB genes, and hence contribute to the greater understanding of their biological roles in pineapple.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3896-y) contains supplementary material, which is available to authorized users.
The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple’s response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar ‘Shenwan’ before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance.
Pineapple is one of the most economically important tropical or subtropical fruit trees. However, few studies focus on the development of its unique collective fruit. In this study, we generated a genome-wide developmental transcriptomic profile of 14 different tissues of the collective fruit of the pineapple covering each of the three major fruit developmental stages. In total, 273 tissue-specific and 1,051 constitutively expressed genes were detected. We also performed gene co-expression analysis and 18 gene modules were classified. Among these, we found three interesting gene modules; one was preferentially expressed in bracts and sepals and was likely involved in plant defense; one was highly expressed at the beginning of fruit expansion and faded afterward and was probably involved in endocytosis; Another gene module increased expression level with pineapple fruit development and was involved in terpenoid and polyketide metabolism. In addition, we built a pineapple electronic fluorescent pictograph (eFP) browser to facilitate exploration of gene expression during pineapple fruit development. With this tool, users can visualize expression data in this study in an intuitive way. Together, the transcriptome profile generated in this work and the corresponding eFP browser will facilitate further study of fruit development in pineapple.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.