Characterization of tissue elasticity (stiffness) and viscosity has important medical applications because these properties are closely related to pathological changes. Quantitative measurement is more suitable than qualitative measurement (i.e., mapping with a relative scale) of tissue viscoelasticity for diagnosis of diffuse diseases where abnormality is not confined to a local region and there is no normal background tissue to provide contrast. Shearwave dispersion ultrasound vibrometry (SDUV) uses shear wave propagation speed measured in tissue at multiple frequencies (typically in the range of hundreds of Hertz) to solve quantitatively for both tissue elasticity and viscosity. A shear wave is stimulated within the tissue by an ultrasound push beam and monitored by a separate ultrasound detect beam. The phase difference of the shear wave between 2 locations along its propagation path is used to calculate shear wave speed within the tissue. In vitro SDUV measurements along and across bovine striated muscle fibers show results of tissue elasticity and viscosity close to literature values. An intermittent pulse sequence is developed to allow one array transducer for both push and detect function. Feasibility of this pulse sequence is demonstrated by in vivo SDUV measurements in swine liver using a dual transducer prototype simulating the operation of a single array transducer.
Experiments were conducted to study light propagation in a light waveguide loop consisting of linearly and circularly moving segments. We found that any segment of the loop contributes to the total phase difference between two counterpropagating light beams in the loop. The contribution is proportional to a product of the moving velocity v and the projection of the segment length l on the moving direction, 4v l=c. It is independent of the type of motion and the refractive index of waveguides. The finding includes the Sagnac effect of rotation as a special case and suggests a new fiber optic sensor for measuring linear motion with nanoscale sensitivity.
A fiber optic conveyor has been developed for investigating the travel-time difference between two counter-propagating light beams in uniformly moving fiber. Our finding is that there is a travel-time difference Δt = 2vΔl/c 2 in a fiber segment of length Δl moving with the source and detector at a speed v, whether the segment is moving uniformly or circularly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.