Dual-function chemosensors that combine the capability of colorimetric and fluorimetric detection of Cu2+ are still relatively rare. Herein, we report that a 3-hydroxyflavone derivative (E)-2-(4-(dimethylamino)styryl)-3-hydroxy-4H-chromen-4-one (4), which is a red-emitting fluorophore, could serve as a reversible colorimetric and fluorescence “turn-off” chemosensor for the detection of Cu2+. Upon addition of Cu2+ to 4 in neutral aqueous solution, a dramatic color change from yellow to purple-red was clearly observed, and its fluorescence was markedly quenched, which was attributed to the complexation between the chemosensor and Cu2+. Conditions of the sensing process had been optimized, and the sensing studies were performed in a solution of ethanol/phosphate buffer saline (v/v = 3:7, pH = 7.0). The sensing system exhibited high selectivity towards Cu2+. The limit of naked eye detection of Cu2+ was determined at 8 × 10−6 mol/L, whereas the fluorescence titration experiment showed a detection limit at 5.7 × 10−7 mol/L. The complexation between 4 and Cu2+ was reversible, and the binding constant was found to be 3.2 × 104 M−1. Moreover, bioimaging experiments showed that 4 could penetrate the cell membrane and respond to the intracellular changes of Cu2+ within living cells, which indicated its potential for biological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.