As a class of water-soluble, fructose-based oligo- and polysaccharides, fructans are major nonstructural carbohydrates and an important carbon source for grain filling in wheat (Triticum aestivum L.). Four enzymes are involved in fructan synthesis in higher plants, and 6-SFT is a key enzyme in fructan biosynthesis. In this study, thirteen single nucleotide polymorphisms were detected in 6-SFT-A2 in 24 wheat accessions, forming three haplotypes. Two cleaved amplified polymorphic sequence markers developed based on polymorphisms at sites 1870(A-G) and 1951(A-G) distinguished the three haplotypes. 6-SFT-A2 was located on chromosome 4A, between markers P2454.3 and P3465.1 in a doubled haploid (DH) population derived from the cross Hanxuan 10 × Lumai 14. The DH population comprising 150 lines and a historical population consisting of 154 accessions were used in a 6-SFT-A2 marker–trait association analysis. The three haplotypes were significantly associated with thousand-grain weight (TGW) under rainfed conditions. HapIII had a significant positive effect on TGW. There were significant differences between the Hanxuan 10 and Lumai 14 genotypes in both rainfed and irrigated environments. The average TGW of Lumai 14 (HapIII) was higher than that of Hanxuan 10 (HapI). The frequencies of 6-SFT-A2HapIII in cultivars released at different periods showed that it had been strongly positively selected in breeding programs. The preferred HapIII for TGW occurred at higher frequencies in Gansu, Beijing, Shanxi, and Hebei than other regions in northern China.Electronic supplementary materialThe online version of this article (doi:10.1007/s11032-015-0266-9) contains supplementary material, which is available to authorized users.
An acyl-CoA-Δ9 desaturase from Saccharomyces cerevisiae was expressed by subcellular-targeting in soybean (Glycine max) seeds with the goal of increasing palmitoleic acid (16:1Δ9), a high-valued fatty acid (FA), and simultaneously decreasing saturated FA in oil. The expression resulted in the conversion of palmitic acid (16:0) to 16:1Δ9 in soybean seeds. 16:1Δ9 and its elongation product cis-vaccenic acid (18:1Δ11) were increased to 17 % of the total fatty acids by plastid-targeted expression of the enzyme. Other lipid changes include the decrease of polyunsaturated FA and saturated FA, suggesting that a mechanism exists downstream in oil biosynthesis to compensate the FA alternation. This is the first time a cytosolic acyl-CoA-∆9 desaturase is functionally expressed in plastid and stronger activity was achieved than its cytosolic expression. The present study provides a new strategy for converting 16:0 to 16:1Δ9 by engineering acyl-CoA-Δ9 desaturase in commercialized oilseeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.