Diapause, the dormancy common to overwintering insects, evokes a unique pattern of gene expression. In the flesh fly, most, but not all, of the fly's heat shock proteins (Hsps) are up-regulated. The diapause up-regulated Hsps include two members of the Hsp70 family, one member of the Hsp60 family (TCP-1), at least four members of the small Hsp family, and a small Hsp pseudogene. Expression of an Hsp70 cognate, Hsc70, is uninfluenced by diapause, and Hsp90 is actually down-regulated during diapause, thus diapause differs from common stress responses that elicit synchronous up-regulation of all Hsps. Up-regulation of the Hsps begins at the onset of diapause, persists throughout the overwintering period, and ceases within hours after the fly receives the signal to reinitiate development. The up-regulation of Hsps appears to be common to diapause in species representing diverse insect orders including Diptera, Lepidoptera, Coleoptera, and Hymenoptera as well as in diapauses that occur in different developmental stages (embryo, larva, pupa, adult). Suppressing expression of Hsp23 and Hsp70 in flies by using RNAi did not alter the decision to enter diapause or the duration of diapause, but it had a profound effect on the pupa's ability to survive low temperatures. We thus propose that up-regulation of Hsps during diapause is a major factor contributing to cold-hardiness of overwintering insects.cold tolerance ͉ overwintering ͉ stress proteins ͉ RNAi
BackgroundThe role of type I collagen, composed of collagen type I alpha 1 (COL1A1) and collagen type I alpha 2 (COL1A2), has been studied in several cancers. However, the expression of COL1A1 and COL1A2 in malignant, premalignant, and normal gastric tissues and their clinical significances in gastric cancer have not been elucidated.MethodsReal-time quantitative PCR was performed in 55 malignant, 27 premalignant, and 19 normal tissues to measure COL1A1 and COL1A2 messenger RNA (mRNA) expression, and the correlations between COL1A1 and COL1A2 expression and clinicopathological parameters and patients’ survival rate were analyzed.ResultsWe found that COL1A1 mRNA expression was significantly upregulated in premalignant and malignant tissues than in normal tissues, whereas COL1A2 mRNA expression was significantly higher in malignant tissues than in premalignant and normal tissues. Moreover, COL1A1 expression was unrelated to clinicopathological parameters, while COL1A2 expression was positively related to tumor size and depth of invasion. Besides, higher COL1A1 and COL1A2 expression levels were related to lower overall survival.ConclusionsWe find that COL1A1 might have its potential as a monitoring factor to screen early gastric cancer, and COL1A1 and COL1A2 might predict poor clinical outcomes in gastric cancer patients.
The accumulation of plasma advanced oxidation protein products (AOPPs) is prevalent in chronic kidney disease. We previously showed that accumulation of AOPPs resulted in podocyte apoptosis and their deletion by a cascade of signaling events coupled with intracellular oxidative stress. The transmembrane receptor that specifically transmits the AOPPs' signals to elicit cellular activity, however, remains unknown. Using co-immunoprecipitation and immunofluorescence, we found that AOPPs colocalized and interacted with the receptor of advanced glycation end products (RAGE) on podocytes. Blocking RAGE by anti-RAGE immunoglobulin G or its silencing by siRNA significantly protected podocytes from AOPPs-induced apoptosis both in vitro and in vivo and ameliorated albuminuria in AOPPs-challenged mice. AOPPs-induced activation of nicotinamide adenine dinucleotide phosphate oxidase and the excessive generation of intracellular superoxide were largely inhibited by anti-RAGE immunoglobulin G or RAGE siRNA. Moreover, blockade of RAGE decreased the activation of the p53/Bax/caspase-dependent proapoptotic pathway induced by AOPPs. Thus, AOPPs interact with RAGE to induce podocyte apoptosis and this, in part, may contribute to the progression of chronic kidney disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.