AIMSWe sought to objectively assess the internal and external validity of patient-derived xenograft (PDX) models as a platform in pre-clinical research into colorectal cancer (CRC). Metastatic disease is the most common cause of death from CRC, and despite significant research, the results of current combination chemotherapy and targeted therapies have been underwhelming for most of this patient group. One of the key factors limiting the success of translational CRC research is the biologically inaccurate models in which new therapies are developed.METHODSWe used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist and SYRCLE (Systematic Review Centre for Laboratory animal Experimentation) guidelines to search Ovid MEDLINE and Embase databases up to July 2015 to identify studies involving PDX models of CRC where the model had been validated across multiple parameters. Data was extracted including host mouse strain, engraftment rate, site of engraftment, donor tumour source and development of metastases in the model.RESULTSThirteen articles satisfied the inclusion criteria. There was significant heterogeneity amongst the included studies, but overall the median engraftment rate was high (70%) and PDX models faithfully recapitulated the characteristics of their patient tumours on the microscopic, genetic and functional levels.CONCLUSIONSPDX models of CRC have a reasonable internal validity and a high external validity. Developments in xenografting technology are broadening the applications of the PDX platform. However, the included studies could be improved by standardising reporting standards and closed following the ARRIVE (Animals in Research: Reporting In Vivo Experiments) guidelines.
Background:Biliary tract cancer (BTC) and benign biliary strictures can be difficult to differentiate using standard tumour markers such as serum carbohydrate antigen 19-9 (CA19-9) as they lack diagnostic accuracy.Methods:Two-dimensional difference gel electrophoresis and tandem mass spectrometry were used to profile immunodepleted serum samples collected from cases of BTC, primary sclerosing cholangitis (PSC), immunoglobulin G4-associated cholangitis and healthy volunteers. The serum levels of one candidate protein, leucine-rich α-2-glycoprotein (LRG1), were verified in individual samples using enzyme-linked immunosorbent assay and compared with serum levels of CA19-9, bilirubin, interleukin-6 (IL-6) and other inflammatory markers.Results:We report increased LRG1, CA19-9 and IL-6 levels in serum from patients with BTC compared with benign disease and healthy controls. Immunohistochemical analysis also demonstrated increased staining of LRG1 in BTC compared with cholangiocytes in benign biliary disease. The combination of receiver operating characteristic (ROC) curves for LRG1, CA19-9 and IL-6 demonstrated an area under the ROC curve of 0.98. In addition, raised LRG1 and CA19-9 were found to be independent predictors of BTC in the presence of elevated bilirubin, C-reactive protein and alkaline phosphatase.Conclusion:These results suggest LRG1, CA19-9 and IL-6 as useful markers for the diagnosis of BTC, particularly in high-risk patients with PSC.
These results indicate that there is an influence of IGF system in tumor progression from BMC to PDAC, whereas the uPA/uPAR system has the greater influence on survival in PDAC.
Background and aims:The serum/plasma proteome was explored for biomarkers to improve the diagnostic ability of CA19-9 in pancreatic adenocarcinoma (PC).Methods:A Training Set of serum samples from 20 resectable and 18 stage IV PC patients, 54 disease controls (DCs) and 68 healthy volunteers (HVs) were analysed by surface-enhanced laser desorption and ionisation time-of-flight mass spectrometry (SELDI-TOF MS). The resulting protein panel was validated on 40 resectable PC, 21 DC and 19 HV plasma samples (Validation-1 Set) and further by ELISA on 33 resectable PC, 28 DC and 18 HV serum samples (Validation-2 Set). Diagnostic panels were derived using binary logistic regression incorporating internal cross-validation followed by receiver operating characteristic (ROC) analysis.Results:A seven-protein panel from the training set PC vs DC and from PC vs HV samples gave the ROC area under the curve (AUC) of 0.90 and 0.90 compared with 0.87 and 0.91 for CA19-9. The AUC was greater (0.97 and 0.99, P<0.05) when CA19-9 was added to the panels and confirmed on the validation-1 samples. A simplified panel of apolipoprotein C-I (ApoC-I), apolipoprotein A-II (ApoA-II) and CA19-9 was tested on the validation-2 set by ELISA, in which the ROC AUC was greater than that of CA19-9 alone for PC vs DC (0.90 vs 0.84) and for PC vs HV (0.96 vs 0.90).Conclusions:A simplified diagnostic panel of CA19-9, ApoC-I and ApoA-II improves the diagnostic ability of CA19-9 alone and may have clinical utility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.