This paper proposes a load frequency control (LFC) scheme for the distributed generation (DG) system of the microgrid (μ-grid) using the D-partition method (DPM). μ-grid is formed with a combination of renewable and non-renewable sources to supply distribution system loads of smaller capacity. In this research paper, μ-grid comprising of a combination of a wind turbine generator (WTG) and Diesel Generator (DG) are taken for investigation of LFC. For the effective control of real power generation of μ-grid, Proportional-integral (PI) controllers are implemented for WTG and DG system so that the frequency deviation is minimized. The PI controller parameters found by using DPM are compared with the conventional Ziegler-Nichols method (ZNM). The main contribution of this work is to provide a single step /simplistic computing method for calculating the PI controller parameters of a dynamic system such as the microgrid system comprising of the renewable energy sources without any further requirements of retuning. Simulation results demonstrate the robustness of the DPM, which is superior in damping frequency oscillations of μ-grid.
The electric power generation over the past decade has moved from conventional fossil fuel-fired thermal power plants to tiny-scale system generating power through distributed generation units. A group of such distributed generation units and loads are termed as microgrids. Microgrids can be located near the load centers to supply the load without any loss of power. Frequency regulation in a microgrid operating in autonomous mode is critical because of the intermittent nature of the renewable sources employed. To maintain the frequency regulation within a tolerance limit in a microgrid, proper control schemes have to be adopted in order to increase or decrease the real power generation. Hence, this article explores and presents a critical review of different types of control strategies employed for frequency regulation in microgrids.
Power systems of today are highly complex and highly interconnected. It generates electricity by burning fossil fuels (coal, natural gas, diesel, nuclear fuel, etc.), which produces harmful gases and particles, pollutes environment, and degrades lives. To mitigate the bad impact of burning fossil fuels and meet the increase in electrical system, demand distributed energy sources employing nonconventional energy sources like wind and solar are used. Electric power generation through the nonconventional energy sources has become more viable and cheaper than the fossil fuel-based power plants. This article explores the development of a microgrid model incorporating wind turbine generators, diesel generator, fuel cells, aqua electrolyzers, and battery energy storage systems. An optimization scheme for fixing the proportional-integral controller parameters of frequency regulation is developed for different possible combinations of wind power with other distributed energy resources in the microgrid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.