Linear conjugated guest molecules with high aspect ratios form inclusion compounds with guanidinium organodisulfonate (GDS) host frameworks in which organodisulfonate "pillars" connect opposing GS sheets to generate lamellar architectures that reflect templating by the guest. Through judicious selection of pillars having adjustable lengths (l(S-S), as measured by the separation between distal sulfur atoms) and guests of various lengths (l(g)), the framework architecture can be controlled systematically in a manner that enables regulation of the guest orientation and aggregation in the host framework. Inclusion compounds for which l(g)/l(S-S) ≤ 0.9 exhibit a bilayer architecture with 1-D channels containing guests oriented parallel to the long axis of the pillar. Guests with values of l(g) comparable to l(S-S), however, promote the formation of a brick architecture in which the guests and the pillar are arranged in a herringbone motif. Surprisingly, longer guests (l(g) = 1.25l(S-S)) favor the formation of the bilayer architecture despite their larger volume because the guests are forced to align end-to-end as single-file arrays due to the vertical constraints of the 1-D channels. Bithiophene and biphenyl guests (l(g) < l(S-S)) are exceptional, promoting bilayer structures in which turnstile rotations of the pillars afford an unusual motif in which the guests are isolated from one another. The ability to synthesize a large family of compounds based on a common supramolecular building block (the GS sheet) permits construction of a structural "phase diagram" based on two simple molecular parameters, l(g) and l(S-S), that can be used to sort the inclusion compounds according to their framework architectures and enable prediction of crystal structures for new host-guest combinations. The effects of these different framework architectures and packing motifs is manifested as bathochromic shifts in the absorption and emission spectra of the guests compared with their spectra in methanol solutions. This behavior is supported by ab initio TDDFT calculations that reproduce the bathochromic shifts associated with the effects of guest-guest and guest-host interactions, combined with conformational constraints imposed on the guest molecules by the rigid host framework.
Organic laser dyes coumarin 1, coumarin 2, coumarin 102, coumarin 314, and coumarin 334 have been included in crystalline guanidinium organodisulfonate (GDS) host frameworks, forming stable inclusion compounds with lamellar architectures. The GDS hosts consist of 2D quasihexagonal hydrogen-bonded sheets with topologically complementary guanidinium (G) ions and the sulfonate (S) moieties of a variety of organodisulfonates that serve as "pillars" that connect opposing GS sheets, thus generating inclusion cavities between the sheets. These host frameworks display a variety of architectural isomers, including the so-called bilayer, simple brick, zigzag brick as well as two heretofore unreported framework isomers: double zigzag brick and a "chevron" brick. These isomers vary with respect to the connectivity between opposing GS sheets and the corresponding shape of the inclusion cavities. The preference for the framework isomers reflects a systematic templating role for the guest molecules, largely based on their steric requirements. The coumarin guests exhibit a distinct arrangement in each host-guest combination, resulting in a range of fluorescence emission wavelengths that differ from that observed for the monomeric form in dilute solutions. For example, the bilayer framework, which has narrow 1D pores, enforces the alignment of coumarin guests as head-to-tail arrays resembling J-aggregates. The simple brick structure, however, has wider 1D channels that permit the formation of linear arrays of face-to-face coumarin dimers resembling H-aggregates. The coumarin guests in the zigzag brick architecture are confined within isolated inclusion cavities as face-to-face dimers. In general, the maxima of the emission bands of the coumarin dyes in the bilayer structure are blue-shifted, while those in the simple brick and zigzag brick structures are red-shifted. The fluorescence reflects the unique guest-guest packing in each framework isomer as well as interactions between the coumarin guest and the organodisulfonate pillar. The ability to include laser dyes in high concentrations in a robust host framework with regulation of intermolecular association between the dye molecules may lead to new solid-state lasing materials that overcome some of the barriers encountered for dyes embedded as dilute solutes in amorphous solid-state matrices such as polymers, zeolites, and sol-gel glasses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.