Sustained hyperglycemic stimulation of vascular cells is involved in the pathogenesis of diabetes mellitus‑induced cardiovascular complications. Silent information regulator T1 (SIRT1), a mammalian sirtuin, has been previously recognized to protect endothelial cells against hyperglycemia‑induced oxidative stress. In the present study, human umbilical vein endothelial cells (HUV‑EC‑C) were treated with D‑glucose, and the levels of oxidative stress, mitochondrial dysfunction, the rate of apoptosis and SIRT1 activity were measured. The effect of manipulated SIRT1 activity on hyperglycemia‑induced oxidative stress, mitochondrial dysfunction and apoptosis was then assessed using the SIRT1 activator, resveratrol (RSV), and the SIRT1 inhibitor, sirtinol. The present study confirmed that hyperglycemia promotes oxidative stress and mitochondrial dysfunction in HUV‑EC‑C cells. The accumulation of reactive oxygen species, the swelling of mitochondria, the ratio of adenosine 5'‑diphosphate to adenosine 5'‑triphosphate and localized mitochondrial superoxide levels were all increased following D‑glucose treatment, whereas the mitochondrial membrane potential was significantly reduced by >50 mg/ml D‑glucose treatment. In addition, hyperglycemia was confirmed to induce apoptosis in HUV‑EC‑C cells. Furthermore, the results confirmed the prevention and aggravation of hyperglycemia‑induced apoptosis by RSV treatment and sirtinol treatment, via the amelioration and enhancement of oxidative stress and mitochondrial dysfunction in HUV‑EC‑C cells, respectively. In conclusion, the present study revealed that hyperglycemia promotes oxidative stress, mitochondrial dysfunction and apoptosis in HUV‑EC‑C cells, and manipulation of SIRT1 activity regulated hyperglycemia‑induced mitochondrial dysfunction and apoptosis in HUV‑EC‑C cells. The data revealed the protective effect of SIRT1 against hyperglycemia‑induced apoptosis via the alleviation of mitochondrial dysfunction and oxidative stress.
Anastomotic techniques are of vital importance in restoring gastrointestinal continuity after resection. An alternative asymmetric figure-of-eight single-layer suture anastomotic technique was introduced and its effects were evaluated in an in vitro porcine model. Twelve 15-cm grossly healthy small intestine segments from a porcine cadaver were harvested and randomly divided into asymmetric figure-of-eight single-layer suture (figure-of-eight suture) and single-layer interrupted suture technique (interrupted suture) groups (n = 6 in each group). The anastomosed bowel was infused with methylene blue solution to test anastomotic leakage. Anastomosis construction time, leakage, and suture material cost were recorded and analyzed statistically using Fisher's exact test and Student's t-test. One anastomotic leakage occurred (16.67%) in the figure-of-eight suture group, and two (33.33%) in the interrupted suture group (p > 0.9999). The anastomosis construction time was relatively short in the figure-of-eight suture group, but the difference did not reach a statistically significant level between the two groups. The mean number of suture knots and the cost of suture material in the figure-of-eight suture group were significantly decreased in comparison to the interrupted suture group (15.67 ± 3.30 vs. 22.17 ± 2.03, 167.11 ± 35.20 vs. 236.45 ± 21.70 CNY, p < 0.01, respectively). Our results suggested that the alternative asymmetric figure-of-eight suture technique was safe and economic for intestinal anastomosis. An in vivo experiment is required to elucidate the effects of this suture technique on the physiological anastomotic healing process.
We report on the reciprocal spin Hall effect of light in T-shaped nanoaperture arrays. Specifically, we demonstrate that the information tied to surface plasmons trajectories can be encoded into free-space spin-carrying photons. The functionality of the system to act as a circular polarizer is therefore implemented in an interference eraser experiment where the device is used as a which-path marker. Complementarity between the wave-like and particle-like behavior of surface plasmons is verified, hence, further demonstrating the outlook for miniaturized optical elements toward on-chip quantum experiments. This work underscores the high potential of plasmonic devices in the realization of integrated polarization optics, hence, opening promising prospects for nanoscale optical communications and quantum photonic network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.