Chemical syntheses generally involve a series of discrete transformations whereby a simple set of starting materials are progressively rendered more complex. In contrast, living systems accomplish their syntheses within complex chemical mixtures, wherein the self-organization of biomolecules allows them to form "assembly lines" that transform simple starting materials into more complex products. Here we demonstrate the functioning of an abiological chemical system whose simple parts self-organize into a complex system capable of directing the multistep transformation of the small molecules furan, dioxygen, and nitromethane into a more complex and information-rich product. The novel use of a self-assembling container molecule to catalytically transform a high-energy intermediate is central to the system's functioning.
Free ortho-hydroxy cinnamate ester derivatives are evaluated in the synthesis of structurally diverse 4-aryl-coumarins via a tandem Heck-Matsuda cyclization reaction. Free phenolic groups were considered incompatible with such a reaction, which usually provide the corresponding diazo dyes. A concise and scalable route employing a ligand-free, Pd-catalyzed Heck-Matsuda arylation under aerobic conditions for the preparation of (R)-Tolterodine in high overall yield and ee is also presented.
Hydrogen (H2) was one of the first molecules discovered by our society, being the most abundant element in the whole universe. Thus, H2 has gained a lot of attention throughout the years, and it has lots of applications in different areas, especially since it offers ways to decarbonize a lot of sectors, mainly the ones where it has been proved to be very difficult to meaningfully reduce those carbon emissions. Herein, the main aspects of the hydrogen economy and its main applications for energy, transportation and industries are described. These main areas outline how important is H2 for our society highlighting how H2 can make those well-known processes more sustainable and greener. By the end, a brief discussion on these applications with future perspectives is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.