Nestin-expressing pluripotent stem cells have been found both in the bulge area (BA) as well as the dermal papilla (DP). Nestin-expressing stem cells of both the BA and DP have been previously shown to be able to form neurons and other non-follicle cell types. The nestin-expressing stem cells from the DP have been termed skin precursor or SKP cells. Both nestin-expressing DP and BA cells have been previously shown to effect repair of the injured spinal cord and peripheral nerve, with the BA being the greater and more constant source of the stem cells. The BA contains nestin-expressing stem cells throughout the hair cycle, whereas nestin-expressing dermal papillae stem cells were found in early and mid-anagen only. Our previous studies have shown that the nestin-expressing stem cells in the BA and DP have similar morphological features. The cells from both regions have a small body diameter of approximately 7 µm with long extrusions, as shown by 2-photon imaging. In the present study, using 2-photon imaging of whisker follicles from transgenic mice expressing nestin-driven green fluorescent protein (ND-GFP), we demonstrate that the BA is the source of the nestin-expressing stem cells of the hair follicle. The nestin-expressing stem cells migrate from the BA to the DP as well as into the surrounding skin tissues including the epidermis, and during wound healing, suggesting that the BA may be the source of the stem cells of the skin itself.
Multiphoton microscopes have become important tools for non-contact sub-wavelength three-dimensional nanoprocessing of living biological specimens based on multiphoton ionization and plasma formation. Ultrashort laser pulses are required, however, dispersive effects limit the shortest pulse duration achievable at the focal plane. We report on a compact nonlinear laser scanning microscope with sub-20 femtosecond 75 MHz near infrared laser pulses for nanosurgery of human stem cells and two-photon high-resolution imaging. Single point illumination of the cell membrane was performed to induce a transient nanopore for the delivery of extracellular green fluorescent protein plasmids. Mean powers of less than 7 mW (<93 pJ) and low millisecond exposure times were found to be sufficient to transfect human pancreatic and salivary gland stem cells in these preliminary studies. Ultracompact sub-20 femtosecond laser microscopes may become optical tools for nanobiotechnology and nanomedicine including optical stem cell manipulation.
Long-term high-resolution multiphoton imaging of nonlabeled human salivary gland stem cell spheroids has been performed with submicron spatial resolution, 10.5-nm spectral resolution, and picosecond temporal resolution. In particular, the two-photon-excited coenzyme NAD(P)H and flavins have been detected by time-correlated single photon counting (TCSPC). Stem cells increased their autofluorescence lifetimes and decreased their total fluorescence intensity during the adipogenic-differentiation process. In addition, the onset of the biosynthesis of lipid vacuoles was monitored over a period of several weeks in stem-cell spheroids. Time-resolved multiphoton autofluorescence imaging microscopes may become a promising tool for marker-free stem-cell characterization and cell sorting.
High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.