The phenotypic spectrum of pyridoxine-dependent epilepsy is wide, including a myriad of neurological and systemic symptoms. Its hallmark feature is refractory seizures during the first year of life. Given its amenability to treatment with lysine-lowering strategies in addition to pyridoxine supplementation for optimal seizure control and developmental outcomes, early diagnosis of pyridoxine-dependent epilepsy is essential. All infants presenting with unexplained seizures should be screened for antiquitin deficiency by determination of α-aminoadipic semialdehyde/pyrroline 6' carboxylate (in urine, plasma or cerebrospinal fluid) and ALDH7A1 molecular analysis.
and the CAUSES Study 1 Purpose: The presentation and etiology of cerebral palsy (CP) are heterogeneous. Diagnostic evaluation can be a prolonged and expensive process that might remain inconclusive. This study aimed to determine the diagnostic yield and impact on management of next-generation sequencing (NGS) in 50 individuals with atypical CP (ACP). Methods: Patient eligibility criteria included impaired motor function with onset at birth or within the first year of life, and one or more of the following: severe intellectual disability, progressive neurological deterioration, other abnormalities on neurological examination, multiorgan disease, congenital anomalies outside of the central nervous system, an abnormal neurotransmitter profile, family history, brain imaging findings not typical for cerebral palsy. Previous assessment by a neurologist and/or clinical geneticist, including biochemical testing, neuroimaging, and chromosomal microarray, did not yield an etiologic diagnosis. Results: A precise molecular diagnosis was established in 65% of the 50 patients. We also identified candidate disease genes without a current OMIM disease designation. Targeted intervention was enabled in eight families (~15%). Conclusion: NGS enabled a molecular diagnosis in ACP cases, ending the diagnostic odyssey, improving genetic counseling and personalized management, all in all enhancing precision medicine practices.
BackgroundMitochondrial diseases, a group of multi-systemic disorders often characterized by tissue-specific phenotypes, are usually progressive and fatal disorders resulting from defects in oxidative phosphorylation. MTO1 (Mitochondrial tRNA Translation Optimization 1), an evolutionarily conserved protein expressed in high-energy demand tissues has been linked to human early-onset combined oxidative phosphorylation deficiency associated with hypertrophic cardiomyopathy, often referred to as combined oxidative phosphorylation deficiency-10 (COXPD10).Material and methodsThirty five cases of MTO1 deficiency were identified and reviewed through international collaboration. The cases of two female siblings, who presented at 1 and 2 years of life with seizures, global developmental delay, hypotonia, elevated lactate and complex I and IV deficiency on muscle biopsy but without cardiomyopathy, are presented in detail.ResultsFor the description of phenotypic features, the denominator varies as the literature was insufficient to allow for complete ascertainment of all data for the 35 cases. An extensive review of all known MTO1 deficiency cases revealed the most common features at presentation to be lactic acidosis (LA) (21/34; 62% cases) and hypertrophic cardiomyopathy (15/34; 44% cases). Eventually lactic acidosis and hypertrophic cardiomyopathy are described in 35/35 (100%) and 27/34 (79%) of patients with MTO1 deficiency, respectively; with global developmental delay/intellectual disability present in 28/29 (97%), feeding difficulties in 17/35 (49%), failure to thrive in 12/35 (34%), seizures in 12/35 (34%), optic atrophy in 11/21 (52%) and ataxia in 7/34 (21%). There are 19 different pathogenic MTO1 variants identified in these 35 cases: one splice-site, 3 frameshift and 15 missense variants. None have bi-allelic variants that completely inactivate MTO1; however, patients where one variant is truncating (i.e. frameshift) while the second one is a missense appear to have a more severe, even fatal, phenotype. These data suggest that complete loss of MTO1 is not viable. A ketogenic diet may have exerted a favourable effect on seizures in 2/5 patients.ConclusionMTO1 deficiency is lethal in some but not all cases, and a genotype-phenotype relation is suggested. Aside from lactic acidosis and cardiomyopathy, developmental delay and other phenotypic features affecting multiple organ systems are often present in these patients, suggesting a broader spectrum than hitherto reported. The diagnosis should be suspected on clinical features and the presence of markers of mitochondrial dysfunction in body fluids, especially low residual complex I, III and IV activity in muscle. Molecular confirmation is required and targeted genomic testing may be the most efficient approach. Although subjective clinical improvement was observed in a small number of patients on therapies such as ketogenic diet and dichloroacetate, no evidence-based effective therapy exists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.