The importance of image security in the field of medical imaging is challenging. Several research works have been conducted to secure medical healthcare images. Encryption, not risking loss of data, is the right solution for image confidentiality. Due to data size limitations, redundancy, and capacity, traditional encryption techniques cannot be applied directly to e-health data, especially when patient data are transferred over the open channels. Therefore, patients may lose the privacy of data contents since images are different from the text because of their two particular factors of loss of data and confidentiality.Researchers have identified such security threats and have proposed several image encryption techniques to mitigate the security problem. However, the study has found that the existing proposed techniques still face application-specific several security problems. Therefore, this paper presents an efficient, lightweight encryption algorithm to develop a secure image encryption technique for the healthcare industry. The proposed lightweight encryption technique employs two permutation techniques to secure medical images. The proposed technique is analyzed, evaluated, and then compared to conventionally encrypted ones in security and execution time. Numerous test images have been used to determine the performance of the proposed algorithm. Several experiments show that the proposed algorithm for image cryptosystems provides better efficiency than conventional techniques.INDEX TERMS Internet of Medical Things, medical image encryption, lightweight encryption.
IoT (Internet of Things) technically connects billions of entities to the Internet. The IoT is divided between the technology and the service itself. As a result, great efforts are needed to join data from many contexts and services. This reason has motivated proposals to develop solutions that can overcome existing issues of limitations for mobility, security, reliability and scalability of IoT. These billions of devices are interconnected to each other either using unicast, multicast or broadcast communications, and mixture of static and mobile communications. This paper aims to investigate the parameters of mobility performance in handover process for mobile multicast IoT environment. Investigation is done quantitatively by evaluating the parameters of handover process for IoT in two networking protocols that are possible to support acceptable mobility performance for IoT. The protocols are ICN (Information Centric Networking) and Proxy Mobile Internet Protocol. The evaluation parameters include packet loss and service recovery time. The metrics are extracted from the handover process flow for each network protocol topology. The service recovery time parameter is assumed as the time duration for each message to travel from sender to receiver, while packet loss parameter depends on the packet arrival rate and service recovery time. The results show that the ICN performs better than Proxy Mobile Internet Protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.