Poly(lactic acid) (PLA) loaded with various levels of chitosan nanoparticles (CsNP) (0-5.0%) were prepared by twinscrew extrusion. The nanocomposites were investigated based on their morphology, thermal, mechanical and dielectric properties. The SEM morphology showed that CsNP was dispersed uniformly in the PLA matrix. Thermal analysis through DSC revealed that the cold crystallization temperature of PLA in the case of nanocomposites slightly decreased with increasing content of CsNP; indicating a limit nucleating effect of CsNP. TGA analysis revealed that the incorporation CsNP slightly decreased the thermal stability of the PLA matrix. The mechanical analysis indicated that the incorporation of the CsNP in the PLA matrix improved the elongation and the impact strength, but decreased the tensile strength. The dielectric properties of these materials have been investigated for the a-relaxation process as a function of the temperature and frequency. The a-relaxation process was analyzed with Vogel-Fulcher-Tamman and Havriliak-Negami models and fitting parameters and their evolution were obtained. POLYM. ENG. SCI., 00:000-000, 2016.
PLA and its nanocomposite containing 3% chitosan nanoparticles (PLA-3CsNP) were studied to see how γ -irradiation affected their characteristics. Different doses of γ -irradiation were applied to the investigated materials under inquiry (5–40 kGy) using 60Co at ambient conditions. The irradiation materials were characterized by FT-IR, GPC, mechanical tensile test, DSC, XRD, and TGA in solid and chloroform solutions. The molecular weight of the studied materials was lowered when the irradiation dose was increased, indicating that γ-irradiation had the dominating effect through oxidative degradation, and chain scission. The addition of chitosan to PLA reduces the impact of γ-irradiation, while the samples irradiated in solution showed more degradation after irradiation than irradiated solid films. Irradiation caused a decrease in tensile strength and elongation at break values. Both the melting temperature (Tm) and the glass transition temperature (Tg) decreased as the irradiation dose was increased. The crystallization peak temperatures were reduced when pure PLA was irradiated in solution. The thermal stability of PLA was diminished as the irradiation dose was raised, and this effect was more pronounced in samples irradiated in chloroform solution.
PLA and its nanocomposite containing 3% chitosan nanoparticles (PLA-3CsNP) were studied to see how γ -irradiation affected their characteristics. Different doses of γ -irradiation were applied to the investigated materials under inquiry (5–40 kGy) using 60Co at ambient condition. The irradiation materials were characterized by FT-IR, GPC, mechanical tensile test, DSC, XRD, and TGA in solid and chloroform solutions. The molecular weight of the studied materials was lowered when the irradiation dose was increased, indicating that γ-irradiation had the dominating effect through oxidative degradation, and chain scission. The addition of chitosan to PLA reduces the impact of γ-irradiation, while the samples irradiated in solution showed more degradation after irradiation than irradiated solid films. Irradiation caused a decrease in tensile strength and elongation at break values. Both the melting temperature (Tm) and the glass transition temperature (Tg) decreased as the irradiation dose was increased. The cold crystallization peak temperatures were reduced when pure PLA was irradiated in solution. The thermal stability of PLA was diminished as the irradiation dose was raised, and this effect was more pronounced in samples irradiated in chloroform solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.