Aerial base stations (ABSs) allow smart farms to offload processing responsibility of complex tasks from internet of things (IoT) devices to ABSs. IoT devices have limited energy and computing resources, thus it is required to provide an advanced solution for a system that requires the support of ABSs. This paper introduces a novel multi-actor-based risk-sensitive reinforcement learning approach for ABS task scheduling for smart agriculture. The problem is defined as task offloading with a strict condition on completing the IoT tasks before their deadlines. Moreover, the algorithm must also consider the limited energy capacity of the ABSs. The results show that our proposed approach outperforms several heuristics and the classic Q-Learning approach. Furthermore, we provide a mixed integer linear programming solution to determine a lower bound on the performance, and clarify the gap between our risk-sensitive solution and the optimal solution, as well. The comparison proves our extensive simulation results demonstrate that our method is a promising approach for providing a guaranteed task processing services for the IoT tasks in a smart farm, while increasing the hovering time of the ABSs in this farm.
A deep reinforcement learning technique is presented for task offloading decision-making algorithms for a multi-access edge computing (MEC) assisted unmanned aerial vehicle (UAV) network in a smart farm Internet of Things (IoT) environment. The task offloading technique uses financial concepts such as cost functions and conditional variable at risk (CVaR) in order to quantify the damage that may be caused by each risky action. The approach was able to quantify potential risks to train the reinforcement learning agent to avoid risky behaviors that will lead to irreversible consequences for the farm. Such consequences include an undetected fire, pest infestation, or a UAV being unusable. The proposed CVaR-based technique was compared to other deep reinforcement learning techniques and two fixed rulebased techniques. The simulation results show that the CVaRbased risk quantifying method eliminated the most dangerous risk, which was exceeding the deadline for a fire detection task. As a result, it reduced the total number of deadline violations with a negligible increase in energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.