Nuclear degradation is a key stage in keratinocyte terminal differentiation and the formation of the cornified envelope that comprises the majority of epidermal barrier function. Parakeratosis, the retention of nuclear material in the cornified layer of the epidermis, is a common histological observation in many skin diseases, notably in atopic dermatitis and psoriasis. Keratinocyte nuclear degradation is not well characterised, and it is unclear whether the retained nuclei contribute to the altered epidermal differentiation seen in eczema and psoriasis. Loss of AKT1 function strongly correlated with parakeratosis both in eczema samples and in organotypic culture models. Although levels of DNAses, including DNase1L2, were unchanged, proteomic analysis revealed an increase in Lamin A/C. AKT phosphorylates Lamin A/C, targeting it for degradation. Consistent with this, Lamin A/C degradation was inhibited and Lamin A/C was observed in the cornified layer of AKT1 knockdown organotypic cultures, surrounding retained nuclear material. Using AKT-phosphorylation-dead Lamin A constructs we show that the retention of nuclear material is sufficient to cause profound changes in epidermal terminal differentiation, specifically a reduction in Loricrin, Keratin 1, Keratin 10, and filaggrin expression. We show that preventing nuclear degradation upregulates BMP2 expression and SMAD1 signalling. Consistent with these data, we observe both parakeratosis and evidence of increased SMAD1 signalling in atopic dermatitis. We therefore present a model that, in the absence of AKT1-mediated Lamin A/C degradation, DNA degradation processes, such as those mediated by DNAse 1L2, are prevented, leading to parakeratosis and changes in epidermal differentiation. Nuclear degradation is a key stage in keratinocyte terminal differentiation and the formation of the cornified envelope that comprises the majority of epidermal barrier function. [1][2][3] Parakeratosis, the retention of nuclear material in the cornified layer of the epidermis, is a common histological observation in many skin diseases, but most notably in the epidermal barrierdefective diseases eczema and psoriasis. 4,5 Mechanisms of nuclear degradation in the epidermis have not yet been well characterised and it is not known whether the retained nuclei contribute to the altered epidermal differentiation programmes seen in these skin diseases. 6,7 It is surprising that, for such a critical component of epidermal terminal differentiation, relatively few molecular mechanisms inducing parakeratosis have been investigated. The caspase-14 knockout mouse develops parakeratotic plaques upon chemical barrier disruption 8 and has subtle defects in epidermal terminal differentiation, including filaggrin processing, 9 whereas the DNAse 1L2 knockout mouse showed constitutive nuclear retention in hair and nails, which led to structural abnormalities in the hair shaft. 10,11 Parakeratosis also occurs during wound healing. 12 Nuclei are retained in the scab of healing wounds, and this correlates with...
BackgroundFilaggrin, which is encoded by the filaggrin gene (FLG), is an important component of the skin's barrier to the external environment, and genetic defects in FLG strongly associate with atopic dermatitis (AD). However, not all patients with AD have FLG mutations.ObjectiveWe hypothesized that these patients might possess other defects in filaggrin expression and processing contributing to barrier disruption and AD, and therefore we present novel therapeutic targets for this disease.ResultsWe describe the relationship between the mechanistic target of rapamycin complex 1/2 protein subunit regulatory associated protein of the MTOR complex 1 (RAPTOR), the serine/threonine kinase V-Akt murine thymoma viral oncogene homolog 1 (AKT1), and the protease cathepsin H (CTSH), for which we establish a role in filaggrin expression and processing. Increased RAPTOR levels correlated with decreased filaggrin expression in patients with AD. In keratinocyte cell cultures RAPTOR upregulation or AKT1 short hairpin RNA knockdown reduced expression of the protease CTSH. Skin of CTSH-deficient mice and CTSH short hairpin RNA knockdown keratinocytes showed reduced filaggrin processing, and the mouse had both impaired skin barrier function and a mild proinflammatory phenotype.ConclusionOur findings highlight a novel and potentially treatable signaling axis controlling filaggrin expression and processing that is defective in patients with AD.
Epidermal stratification critically depends on keratinocyte differentiation and programmed death by cornification, leading to formation of a protective skin barrier. Cornification is dynamically controlled by the protein filaggrin, rapidly released from keratohyalin granules (KHGs). However, the mechanisms of cornification largely remain elusive, partly due to limitations of the observation techniques employed to study filaggrin organization in keratinocytes. Moreover, while the abundance of keratins within KHGs has been well described, it is not clear whether actin also contributes to their formation or fate. We employed advanced (super-resolution) microscopy to examine filaggrin organization and dynamics in skin and human keratinocytes during differentiation. We found that filaggrin organization depends on the cytoplasmic actin cytoskeleton, including the role for α- and β-actin scaffolds. Filaggrin-containing KHGs displayed high mobility and migrated toward the nucleus during differentiation. Pharmacological disruption targeting actin networks resulted in granule disintegration and accelerated cornification. We identified the role of AKT serine/threonine kinase 1 (AKT1), which controls binding preference and function of heat shock protein B1 (HspB1), facilitating the switch from actin stabilization to filaggrin processing. Our results suggest an extended model of cornification in which filaggrin utilizes actins to effectively control keratinocyte differentiation and death, promoting epidermal stratification and formation of a fully functional skin barrier.
Epidermal squamous cell carcinoma (SCC) is the most aggressive non-melanoma skin cancer and is dramatically increased in patients undergoing immunosuppression following solid organ transplantation, contributing substantially to morbidity and mortality. Recent clinical studies show that use of the mammalian target of rapamycin (mTOR) inhibitor rapamycin as a post-transplantation immunosuppressive significantly reduces SCC occurrence compared with other immunosuppressives, though the mechanism is not fully understood. We show that rapamycin selectively upregulates epidermal Akt1, while failing to upregulate epidermal Akt2. Rapamycin increases epidermal Akt1 phosphorylation via inhibition of the mTOR complex 1-dependent regulation of insulin receptor substrate-1. Epidermal Akt1 is commonly downregulated in SCC while Akt2 is upregulated. We now demonstrate similar Akt1 downregulation and Akt2 upregulation by ultraviolet (UV) radiation, the most important skin carcinogen. Hence, rapamycin's upregulation of Akt1 signaling could potentially oppose the effects of UV radiation and/or tumor-associated changes on Akt1 signaling. We show in skin culture that rapamycin does enhance restoration of Akt1 phosphorylation in skin recovering from UV radiation, suggesting a mechanism for rapamycin's antitumor activity in epidermis in spite of its efficient immunosuppressive properties.
Inhibitors of Bruton's tyrosine kinase (BTKi) and phosphatidylinositol 3-kinase delta (PI3Kδi) that target the B cell receptor (BCR) signaling pathway have revolutionized the treatment of chronic lymphocytic leukemia (CLL). While mutations associated with resistance to BTK inhibitors have been identified, limited data are available on mechanisms of resistance to PI3Kδi. Here we present findings from longitudinal whole-exome sequencing of multiply relapsed CLL patients (Ncases=28) enrolled in PI3Ki trials. The non-responder subgroup was characterized by baseline activating mutations in MAP2K1, BRAF and KRAS in 60% of patients. PI3Kδ inhibition failed to inhibit ERK phosphorylation (pERK) in non-responder CLL cells with and without mutations, while treatment with MEKi rescued ERK inhibition. Overexpression of MAP2K1 mutants in vitro led to increased basal and inducible pERK and resistance to idelalisib. These data demonstrate that MAPK/ERK activation plays a key role in resistance to PI3Kδi in CLL and provide rationale for combination therapy with PI3Kδ and ERK inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.