Background
In India, for the treatment of cold, fever and inflammation, people consume herbal remedies containing Andrographis paniculata Nees (APE) as main ingredient, along with NSAIDs. So the purpose of this study is to investigate the effect of APE and pure andrographolide (AN) on the pharmacokinetic of with aceclofenac (ACF) and celecoxib (CXB) after oral co-administration in wistar rats. After co-administration of APE (equivalent to 20 mg/kg of AN) and AN (20 mg/kg) with ACF (5 mg/kg) and CXB (5 mg/kg) in rats, orally, drug concentrations in plasma were determined using HPLC method. Non-compartment model was used to calculate pharmacokinetic parameters like Cmax, Tmax, t1/2, MRT, Vd, CL, and AUC.
Results
Co-administration of ACF and CXB with APE and pure AN altered the systemic exposure level of each compound in vivo. The Cmax, Tmax, MRT of CXB were increased whereas Vd and Cl of CXB were decreased significantly after co-administration of CXB with APE. Whereas co-administration of CXB with AN significantly decreased Vd, CL, and MRT of CXB. The concentration of ACF was increased significantly in co-administered groups with pure AN and APE. The AUC0-∞, AUMC0-∞, MRT, Vd and t1/2 of ACF were also significantly decreased in co-administered groups, hence CL of ACF was increased significantly.
Conclusion
This study concludes that APE and pure AN have effect on pharmacokinetic of CXB and ACF in rat. Not only patients but medical practitioners using Andrographis paniculata should have awareness regarding probable herb–drug interactions with ACF and CXB.
Objective: Momordica charantia fruit extract and antidiabetic drug Nateglinide might be used simultaneously in the treatment of diabetes, so the objective of this study was to investigate pharmacokinetic herb-drug interactions of Momordica charantia fruit extract and pure charantin with nateglinide in rats.
Methods: After oral co-administration of Momordica charantia fruit extract (250 mg/kg) and Charantin (10 mg/kg) with nateglinide in rats, drug concentration parameters peak plasma concentration (Cmax), time to reach peak plasma concentration (tmax), elimination half-life (t1/2), apparent volume of distribution (Vd), plasma clearance (Cl), and area under the curve (AUC) were calculated by using the non-compartment model.
Results: NAT was absorbed into the circulatory system and reached its peak concentration approximately 2 h after being administered individually. tmax of groups co-administered NAT+MCE has been changed to 4h. A significant decrease in Cmax of NAT from 16.28 µg/ml to 11.37 µg/ml and 10.37 µg/ml with NAT with charantin and NAT with MCE groups, respectively. AUC of NAT decreased from 84.53 h/µg/ml to 53.63 h/µg/ml and 47.17 h/µg/ml by co-administration with Charantin and MCE respectively. Co-administration of nateglinide with Charantin and Momordica charantia fruit extract decreased systemic exposure level of nateglinide in vivo with decreasing Cmax and AUC and an increase in t1/2, Cl and Vd.
Conclusion: From this study, it can be concluded that nateglinide, Momordica charantia fruit extract, and pure Charantin existed pharmacokinetic herb-drug interactions in the rat which has to be correlated with the anti-diabetic study. Further studies should be done to understand the effect of other herbal ingredients of Momordica charantia fruit extract on nateglinide as well as to predict the herb-drug interaction in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.