A simple chemical reduction method was employed to synthesize Cu-Ag and Ag-Cu core-shell nanostructures inside polyvinyl alcohol (PVA) matrix at room temperature. The core-shell nanostructures have been synthesized by varying the two different concentrations (i.e. 0.1 and 0.01 M) of the respective metal ions in equimolar ratios using successive reduction with hydrazine hydrate (HH) as a reducing agent. The core-shell nanostructures have been further characterized by different characterization techniques. The UV-visible spectroscopy exhibit the respective shift in the band positions suggesting the formation of core-shell nanostructures, which was further confirmed by field emission transmission electron microscopy-high-angle-annular dark field elemental mapping.The effect of metal ion concentration of the core-shell nanostructure on various Gram positive and Gram negative bacteria like Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and one fungal species Aspergillus fumigatus was observed by performing MIC and MBC/MFC study. Cu-Ag core-shell nanostructures were found to be effective antibacterial agent against all tested Gram-positive and Gram-negative bacteria, whereas Ag-Cu core-shell nanostructures were more efficient against a particular fungal species known as A. fumigatus. The highest value of MIC (75 µg ml −1 ) for Ag-Cu 0.1M core shell nanostructures (D1) was noted against S. aureus and E. coli whereas the lowest value (20 µg ml −1 ) was observed with P. aeruginosa. While in case of Cu-Ag 0.1M core shell nanostructures (E1) the highest value of MIC (100 µg ml −1 ) was noted against S. aureus and P. aeruginosa whereas the lowest value (15 µg ml −1 ) was observed with A. fumigatus.Also, field effect scanning electron microscope (FESEM) images of untreated and core-shell nanoparticles treated micro-organisms showed that 0.1 M Ag-Cu and 0.1 M Cu-Ag core-shell nanostructure can successfully break the cell wall of the fungi A. fumigatus and bacteria P. aeruginosa, respectively. Thus the present study concludes that, Cu-Ag & Ag-Cu core-shell nanostructures damage the cell structure of micro-organisms and inhibits their growth. Hence, the present Cu-Ag & Ag-Cu core-shell nanostructure acts as good antimicrobial agent against the bacteria and fungi, respectively.
A novel, highly sensitive gold nanowire (AuNW) resistive sensor is reported here for humidity sensing in the relative humidity range of 11% to 92% RH as well as for breath sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.