Oral administration of anti-CFA/I minor pilin subunit (CfaE) antibodies conferred significant protection against ETEC, providing the first clinical evidence that fimbrial tip adhesins function as protective antigens.
Enterotoxigenic Escherichia coli (ETEC) are the most common cause of bacterial diarrhea in young children in developing countries and in travelers. Efforts to develop an ETEC vaccine have intensified in the past decade, and intestinal colonization factors (CFs) are somatic components of most investigational vaccines. CFA/I and related Class 5 fimbrial CFs feature a major stalk-forming subunit and a minor, antigenically conserved tip adhesin. We hypothesized that the tip adhesin is critical for stimulating antibodies that specifically inhibit ETEC attachment to the small intestine. To address this, we compared the capacity of donor strand complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, and CFA/I fimbriae to elicit anti-adhesive antibodies in mice, using hemagglutination inhibition (HAI) as proxy for neutralization of intestinal adhesion. When given with genetically attenuated heat-labile enterotoxin LTR192G as adjuvant by intranasal (IN) or orogastric (OG) vaccination, dscCfaE exceeded CFA/I fimbriae in eliciting serum HAI titers and anti-CfaE antibody titers. Based on these findings, we vaccinated Aotus nancymaae nonhuman primates (NHP) with dscCfaE alone or admixed with one of two adjuvants, LTR192G and cholera toxin B-subunit, by IN and OG administration. Only IN vaccination with dscCfaE with either adjuvant elicited substantial serum HAI titers and IgA and IgG anti-adhesin responses, with the latter detectable a year after vaccination. In conclusion, we have shown that dscCfaE elicits robust HAI and anti-adhesin antibody responses in both mice and NHPs when given with adjuvant by IN vaccination, encouraging further evaluation of an ETEC adhesin-based vaccine approach.
The establishment of an animal model that closely approximates enterotoxigenic Escherichia coli (ETEC) disease in humans is critical for the development and evaluation of vaccines against this enteropathogen. Here, we evaluated the susceptibility of Aotus nancymaae, a New World monkey species, to ETEC infection. Animals were challenged orogastrically with 109 to 1011 CFU of the human pathogenic CFA/I+ ETEC strain H10407 and examined for evidence of diarrhea and fecal shedding of bacteria. A clear dose-range effect was obtained, with diarrheal attack rates of 40% to 80%, validated in a follow-on study demonstrating an attack rate of 80% with 1011 CFU of H10407 ETEC. To determine whether this model is an effective approach for assessing ETEC vaccine candidates, we used it to evaluate the ability of the donor strand-complemented CFA/I adhesin CfaE (dscCfaE) to protect against H10407 challenge. In a series of experiments, animals were intranasally vaccinated with dscCfaE alone, dscCfaE with either cholera toxin B-subunit (CTB) or heat-labile toxin (LTB), or phosphate-buffered saline (PBS) alone and then challenged with 1011 CFU of H10407. Control animals vaccinated with PBS had attack rates of 70 to 90% on challenge. Vaccination with dscCfaE, or dscCfaE admixed with CTB or LTB, resulted in a reduction of attack rates, with vaccine efficacies of 66.7% (P = 0.02), 77.7% (P = 0.006), and 42.9% (P = 0.370) to 83.3% (P = 0.041), respectively. In conclusion, we have shown the H10407 ETEC challenge of A. nancymaae to be an effective, reproducible model of ETEC disease, and importantly, we have demonstrated that in this model, vaccination with the prototype vaccine candidate dscCfaE is protective against CF-homologous disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.