Oral administration of anti-CFA/I minor pilin subunit (CfaE) antibodies conferred significant protection against ETEC, providing the first clinical evidence that fimbrial tip adhesins function as protective antigens.
Enterotoxigenic Escherichia coli (ETEC) are the most common cause of bacterial diarrhea in young children in developing countries and in travelers. Efforts to develop an ETEC vaccine have intensified in the past decade, and intestinal colonization factors (CFs) are somatic components of most investigational vaccines. CFA/I and related Class 5 fimbrial CFs feature a major stalk-forming subunit and a minor, antigenically conserved tip adhesin. We hypothesized that the tip adhesin is critical for stimulating antibodies that specifically inhibit ETEC attachment to the small intestine. To address this, we compared the capacity of donor strand complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, and CFA/I fimbriae to elicit anti-adhesive antibodies in mice, using hemagglutination inhibition (HAI) as proxy for neutralization of intestinal adhesion. When given with genetically attenuated heat-labile enterotoxin LTR192G as adjuvant by intranasal (IN) or orogastric (OG) vaccination, dscCfaE exceeded CFA/I fimbriae in eliciting serum HAI titers and anti-CfaE antibody titers. Based on these findings, we vaccinated Aotus nancymaae nonhuman primates (NHP) with dscCfaE alone or admixed with one of two adjuvants, LTR192G and cholera toxin B-subunit, by IN and OG administration. Only IN vaccination with dscCfaE with either adjuvant elicited substantial serum HAI titers and IgA and IgG anti-adhesin responses, with the latter detectable a year after vaccination. In conclusion, we have shown that dscCfaE elicits robust HAI and anti-adhesin antibody responses in both mice and NHPs when given with adjuvant by IN vaccination, encouraging further evaluation of an ETEC adhesin-based vaccine approach.
Background
Enterotoxigenic Escherichia coli (ETEC) commonly cause diarrhea in children living in developing countries and in travelers to those regions. ETEC are characterized by colonization factors (CFs) that mediate intestinal adherence. We assessed if bovine colostral IgG (bIgG) antibodies against a CF, CS17, or antibodies against CsbD, the minor tip subunit of CS17, would protect subjects against diarrhea following challenge with a CS17-expressing ETEC strain.
Methods
Adult subjects were randomized (1:1:1) to receive oral bIgG against CS17, CsbD, or placebo. Two days prior to challenge, subjects began dosing 3 times daily with the bIgG products (or placebo). On day 3, subjects ingested 5 × 109 cfu ETEC strain LSN03-016011/A in buffer. Subjects were assessed for diarrhea for 120 hours postchallenge.
Results
A total of 36 subjects began oral prophylaxis and 35 were challenged with ETEC. While 50.0% of the placebo recipients had watery diarrhea, none of the subjects receiving anti-CS17 had diarrhea (P = .01). In contrast, diarrhea rates between placebo and anti-CsbD recipients (41.7%) were comparable (P = 1.0).
Conclusions
This is the first study to demonstrate anti-CS17 antibodies provide significant protection against ETEC expressing CS17. More research is needed to better understand why anti-CsbD was not comparably efficacious.
Clinical Trials Registration. NCT00524004
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.