The coronavirus disease (COVID-19) pandemic emerged in Wuhan, China, in December 2019 and caused a serious threat to global public health. In Morocco, the first confirmed COVID-19 case was reported on March 2, 2020. Since then, several non-pharmaceutical interventions were used to slow down the spread of the disease. In this work, we use a previously developed multi-scale model of COVID-19 transmission dynamics to quantify the effects of restricting population movement and wearing face masks on disease spread in Morocco. In this model, individuals are represented as agents that move, become infected, transmit the disease, develop symptoms, go into quarantine, die by the disease, or become immunized. We describe the movement of agents using a social force model and we consider both modes of direct and indirect transmission. We use the model to simulate the impact of restricting the movement of the population movement and mandating the wearing of masks on the spread of COVID-19. The model predicts that adopting these two measures would reduce the total number of cases by 64%. Furthermore, the relative incidence of indirect transmission increases when control measures are adopted.
Coronavirus disease 2019 (COVID-19) emerged in Wuhan, China in 2019, has spread throughout the world and has since then been declared a pandemic. As a result, COVID-19 has caused a major threat to global public health. In this paper, we use mathematical modeling to analyze the reported data of COVID-19 cases in Vietnam and study the impact of non-pharmaceutical interventions. To achieve this, two models are used to describe the transmission dynamics of COVID-19. The first model belongs to the susceptible-exposed-infectious-recovered (SEIR) type and is used to compute the basic reproduction number. The second model adopts a multi-scale approach which explicitly integrates the movement of each individual. Numerical simulations are conducted to quantify the effects of social distancing measures on the spread of COVID-19 in urban areas of Vietnam. Both models show that the adoption of relaxed social distancing measures reduces the number of infected cases but does not shorten the duration of the epidemic waves. Whereas, more strict measures would lead to the containment of each epidemic wave in one and a half months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.