We study the stationary and propagating solutions for a Bose-Einstein condensate (BEC) in a periodic optical potential with an additional confining optical or magnetic potential. Using an effective mass approximation we express the condensate wave function in terms of slowly-varying envelopes modulating the Bloch modes of the optical lattice. In the limit of a weak nonlinearity, we derive a nonlinear Schrödinger equation for propagation of the envelope function which does not contain the rapid oscillation of the lattice. We then consider the ground state solutions in detail in the regime of weak, moderate and strong nonlinear interactions. We describe the form of solution which is appropriate in each regime, and place careful limits on the validity of each type of solution. Finally we extend the study to the propagating dynamics of a spinor atomic BEC in an optical lattice and some interesting phenomena are revealed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.