The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.
Language identification, as the task of determining the language a given text is written in, has progressed substantially in recent decades. However, three main issues remain still unresolved: (i) distinction of similar languages, (ii) detection of multilingualism in a single document, and (iii) identifying the language of short texts. In this paper, we describe our work on the development of a benchmark to encourage further research in these three directions, set forth an evaluation framework suitable for the task, and make a dataset of annotated tweets publicly available for research purposes. We also describe the shared task we organized to validate and assess the evaluation framework and dataset with systems submitted by seven different participants, and analyze the performance of these systems. The evaluation of the results submitted by the participants of the shared task helped us shed some light on the shortcomings of state-of-the-art language identification systems, and gives insight into the extent to which the brevity, multilingualism, and language similarity found in texts exacerbate the performance of language identifiers. Our dataset with nearly 35,000 tweets and the evaluation framework provide researchers and practitioners with suitable resources to further study the aforementioned issues on language identification within a common setting that enables to compare results with one another.
Abstract-Alzheimer's disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.