Lipid droplet proteins of the PAT (perilipin, adipophilin, and TIP47) family regulate cellular neutral lipid stores. We have studied a new member of this family, PAT-1, and found that it is expressed in highly oxidative tissues. We refer to this protein as "OXPAT.
Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 ( r = −0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity ( r = −0.58, P < 0.02) and positively with macrophage number ( r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity.
To examine the role of adipose-resident macrophages in insulin resistance, we examined the gene expression of CD68, a macrophage marker, along with macrophage chemoattractant protein-1 (MCP-1) in human subcutaneous adipose tissue using real-time RT-PCR. Both CD68 and MCP-1 mRNAs were expressed in human adipose tissue, primarily in the stromal vascular fraction. When measured in the adipose tissue from subjects with normal glucose tolerance, covering a wide range of BMI (21-51 kg/m 2 ) and insulin sensitivity (S I ) (0.6 -8.0 ؋ 10 ؊4 min ؊1 ⅐ U -1 ⅐ ml -1 ), CD68 mRNA abundance, which correlated with the number of CD68-positive cells by immunohistochemistry, tended to increase with BMI but was not statistically significant. However, there was a significant inverse relation between CD68 mRNA and S I (r ؍ ؊0.55, P ؍ 0.02). In addition, there was a strong positive relationship among adipose tissue CD68 mRNA, tumor necrosis factor-␣ (TNF-␣) secretion in vitro (r ؍ 0.79, P < 0.005), and plasma interleukin-6 (r ؍ 0.67, P < 0.005). To determine whether improving S I in subjects with impaired glucose tolerance (IGT) was associated with decreased CD68 expression, IGT subjects were treated for 10 weeks with pioglitazone or metformin. Pioglitazone increased S I by 60% and in the same subjects reduced both CD68 and MCP-1 mRNAs by >50%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.