A magnetic fluid seal is often used in complex working conditions with harsh environmental requirements. Timely and accurate identification of the seal status can help avoid the major economic losses and even casualties caused by the seal failure. However, research on the recognition of magnetic fluid seal status is still at the exploratory stage internationally. Aiming at the problem of inclusion of other components and Gaussian noise when using acoustic emission nondestructive testing technology to detect the magnetic fluid seal status, a new recognition method based on the combination of high-order cumulant image and VGG16 convolutional neural network is proposed to identify the magnetic fluid seal status in this paper. In this method, high-order cumulant images are used for the denoising and feature selecting of detected signals, and the VGG16 convolutional neural network is trained to automatically learn image features to classify and recognize high-order cumulant images representing different sealing states. Experiments show that the accuracy of image recognition using VGG16 is significantly higher than that of other methods. The VGG16 method can identify the magnetic fluid seal state accurately and effectively, with strong robustness and Gaussian noise suppression ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.