PurposeThe purpose of this paper is to overcome the weakness of the traditional model, in which the grey action quantity is a real number and thus leads to a “unique solution” and to build the model with a trapezoidal possibility degree function.Design/methodology/approachUsing the system input and output block diagram of the model, the interval grey action quantity is restored under the condition of insufficient system influencing factors, and the trapezoidal possibility degree function is formed. Based on that, a new model able to output non-unique solutions is constructed.FindingsThe model satisfies the non-unique solution principle of the grey theory under the condition of insufficient information. The model is compatible with the traditional model in structure and modelling results. The validity and practicability of the new model are verified by applying it in simulating the ecological environment water consumption in the Yangtze River basin.Practical implicationsIn this study, the interval grey number form of grey action quantity is restored under the condition of insufficient system influencing factors, and the unique solution to the problem of the traditional model is solved. It is of great value in enriching the theoretical system of grey prediction models.Social implicationsTaking power consumption as an example, the accurate prediction of the future power consumption level is related to the utilization efficiency of the power infrastructure investment. If the prediction of the power consumption level is too low, it will lead to the insufficient construction of the power infrastructure and the frequent occurrence of “power shortage” in the power industry. If the prediction is too high, it will lead to excessive investment in the power infrastructure. As a result, the overall surplus of power supply will lead to relatively low operation efficiency. Therefore, building an appropriate model for the correct interval prediction is a better way to solve such problems. The model proposed in this study is an effective one to solve such problems.Originality/valueA new grey prediction model with its interval grey action quantity based on the trapezoidal possibility degree function is proposed for the first time.
The identification and analysis of the spatiotemporal dynamic traffic patterns in citywide road networks constitute a crucial process for complex traffic management and control. However, city-scale and synchronal traffic data pose challenges for such kind of quantification, especially during peak hours. Traditional studies rely on data from road-based detectors or multiple communication systems, which are limited in not only access but also coverage. To avoid these limitations, we introduce real-time, traffic condition digital maps as our input. The digital maps keep spatiotemporal urban traffic information in nature and are open to access. Their pixel colors represent traffic conditions on corresponding road segments. We propose a stacked convolutional autoencoder-based method to extract a low-dimension feature vector for each input. We compute and analyze the distances between vectors. The statistical results show different traffic patterns during given periods. With the actual data of Chongqing city, we compare the feature extraction performance between our proposed method and histogram. The result shows our proposed method can extract spatiotemporal features better. For the same data set, there is little difference in the number distribution of red pixels found in the statistics result of the histogram, while differences do exist in the results of our proposed method. We find the most fluctuated morning is on Friday; the most fluctuated evening is on Tuesday; and the most stable evening is on Wednesday. The distance captured by our method can represent the evolution of different traffic conditions during the morning and evening peak hours. Our proposed method provides managers with assistance to sense the dynamics of citywide traffic conditions in quantity.
Defogging algorithms based on dark channel prior have color shift in light color areas because of inaccurate estimation of transmittance. To resolve this problem, a novel improved image clearness method is proposed. Based on the dark channel prior, the essential causes of color shift are analyzed, with two important factors summarized. Then, transmission map is calculated by using 3 * 3 fixed region, and the restoration module based on self-adaptive threshold mechanism for transmission map is provided. Some experiments are carried out to determine parameters in restoration module to correct the transmission map. According to the corrected transmission map, a transmission restoration algorithm is constructed based on the self-adaptive threshold mechanism to improve the performance of the fog-free image. The experiment results show that this method can resolve the color shift in light color areas effectively and guarantee the overall framework of defogging method based on dark color theory unchanged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.