As a cancer stem cell marker, CD44 variant 6 (CD44v6) has been implicated in carcinogenesis, tumor progression, and metastasis in a variety of human carcinomas. However, little is known about the expression of CD44v6 in Gastric Carcinoma (GC). Therefore we investigated CD44v6 expression in clinical specimen and further explore the underlying molecular mechanisms.In this study, we systemically investigated CD44v6 expression by immunohistochemistry in normal, premalignant gastric mucosa (low and high grade intraepithelial neoplasia), and GC at various stages. The correlation of CD44v6 expression with clinicopathological characteristics, and prognosis in GC was also analyzed. Next, we investigated cell proliferation, migration and invasion in GC cell lines. Furthermore, we explored a novel mechanism by which CD44V6 was upregulated in GC cell.The immunohistochemistry results showed that enhanced expression of CD44v6 was closely associated with tumor differentiation, lymph node metastasis, TNM stage and poor prognosis in GC patients. In gastric cancer cell lines, CD44v6 involved in cell proliferation, invasion and metastasis in Next, report on a novel mechanism by which interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling up-regulates expression of CD44v6. RNA interference silencing of STAT3 resulted in decrease of CD44v6 levels. We also found that STAT3 inhibitor AG490 decrease expression of CD44v6 by blocking activation of STAT3, even in the presence of IL-6. Targeting STAT3-mediated CD44v6 up-regulation may represent a novel, effective treatment by eradicating the stomach tumor microenvironment.
The activation of hepatic stellate cells (HSCs) plays a vital role in the progression of liver fibrosis, and the induction of HSCs apoptosis may attenuate or reverse fibrogenesis. The therapeutic effects of etoposide(VP-16), a widely used anticancer agent, on HSCs apoptosis and liver fibrosis resolution are still unclear. Here, we report that VP-16 reduced the proliferation of LX-2 cells and led to significantly high levels of apoptosis, as indicated by Annexin V staining and the proteolytic cleavage of the executioner caspase-3 and PARP. Additionally, the unfolded protein response regulators CHOP, BIP, caspase-12, p-eIF2α and IRE1α, which are considered endoplasmic reticulum (ER) stress markers, were upregulated by VP-16. The strong inhibitory effect of VP-16 on LX-2 cells was mainly dependent on ER stress, which activated JNK signaling pathway. Remarkably, VP-16 treatment decreased the expression of α-SMA and type I collagen and simultaneously increased the ratio of matrix metalloproteinases (MMPs) to tissue inhibitor of matrix metalloproteinases (TIMPs). In contrast, VP-16 induced significantly more apoptosis in HSCs than in normal hepatocytes. Taken together, our findings demonstrate that VP-16 exerts a proapoptotic effect on LX-2 cells and has an antifibrogenic effect on collagen deposition, suggesting a new strategy for the treatment of liver fibrosis.
To detect the effects of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) on SIRT1 expression and p53 deacetylation, involving cell senescence, in activated human hepatic stellate cell (HSC) in vitro, human HSC LX-2 was cultured with TWEAK for 24 h. The result showed that the expression of membrane receptor Fn14 was remarkably increased by TWEAK, which upregulated SIRT1 in LX-2 cells, detected by Western blotting and real-time PCR. The expression of p53 was not significantly altered; however, the ac-p53 was decreased. Furthermore, the viability of LX-2 cells was significantly enhanced by TWEAK. The activity of SA-β-Gal was notably inhibited, showing a suppressing effect of TWEAK on the senescence of activated HSC. Primary cultured HSC on days 7 and 11 was used to examine the expression of TWEAK, Fn14, SIRT1, and the activity of SA-β-Gal. The result indicated that the mRNA of TWEAK, SIRT1, and Fn14 was all decreased on day 11 compared to that on day 7, and the activity of SA-β-Gal was higher on day 11 than that on day 7. The present study suggested that TWEAK enhanced the expression of SIRT1 and decreased the acetylation of p53, probably inhibiting the senescence of activated HSC in vitro, which provides a molecular basis for TWEAK as a potential target in the therapy of liver fibrosis.
In the liver, the signal and function of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) have mainly been assessed in association with liver regeneration.However, the effects of TWEAK on liver fibrosis have not been fully elucidated. To investigate the effects of TWEAK on human hepatic stellate cells (HSCs) and to explore the relevant potential mechanisms, human HSCs line—LX-2 were cultured with TWEAK. Cell migration was detected by transwell assay; cell viability was evaluated by Cell Counting Kit-8; the expression of MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP11, MMP12, MMP13 gene was identified by quantitative real-time polymerase chain reaction and western blotting; the activity of matrix metalloproteinases (MMPs) was tested by enzyme-linked immuno sorbent assay; small interfering RNA transfection was applied for depletion of MMP9 and p65. The result of transwell assay revealed that TWEAK promoted LX-2 migration. Subsequently, our data testified that the expression and activity of MMP9 was induced by TWEAK in LX-2 cells, which enhanced the migration. Furthermore, our findings showed that TWEAK upregulated the phosphorylation of IκBα and p65 protein to increase MMP9 expression in LX-2 cells. Meanwhile, the alpha-smooth muscle actin, vimentin and desmin expression were upregulated following TWEAK treatment. The results in the present study revealed that TWEAK promotes HSCs migration via canonical NF-κB/MMP9 pathway, which possibly provides a molecular basis targeting TWEAK for the therapy of liver fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.