Application of AV-17 at a concentration of up to 0.125 mg/ml was well tolerated in terms of retinal function, survival in the GCL, and glial reactivity whereas higher concentrations are not recommended.
PurposeTo examine the viability and differentiation of retinal pigment epithelial (RPE) cells after exposure to the vital dye Acid Violet-17 (AV-17).MethodsBovine RPE cells were incubated with AV-17 (0.0625–0.5 mg/mL) for 30 seconds or 5 minutes. Viability was determined by live/dead staining, cleaved CASP3 immunostainings, and MTT test. Actin cytoskeleton was visualized by Alexa 488-phalloidin. Immunocytochemistry was performed to determine the levels of ZO-1, CTNNB1, and KRT19.ResultsExposure to AV-17 at the concentrations of 0.25–0.5 mg/mL resulted in a dose-dependent decrease in viability, the loss of ZO-1 from tight junctions, translocation of CTNNB1 into the cytoplasm and nucleus, disarrangement of the actin cytoskeleton, and a slight increase in KRT19.ConclusionAV-17 at a concentration <0.125 mg/mL is likely to be well tolerated by the RPE cells, whereas the concentrations from 0.25 mg/mL onward can reduce viability and induce dedifferentiation particularly after long-term exposure.
Aims: To investigate the outcomes of Rho-kinase inhibition in the electrophysiological ex vivo model of the isolated perfused vertebrate retina under hypoxia. Methods: Bovine retinas were perfused with an oxygen saturated nutrient solution with or without the Rho-kinase inhibitor H-1152P. The retinas were stimulated repeatedly until stable amplitudes were reached and the electroretinogram was recorded at five minute intervals. Hypoxia was induced for 15, 30, and 45 minutes, after which the oxygen saturation was restored. The extent of the cell damage and glial reactivity was determined by Ethidium homodimer-1 staining, immunohistochemistry, and Western blot. Results: Hypoxia caused a time-dependent reduction of the b-wave amplitudes, which could not be prevented by the H-1152P. Although the Rho-kinase inhibitor maintained higher b-wave amplitudes, these effects did not reach statistical significance. Hypoxia also resulted in an increase in cell damage and the activation of the glial cells in the untreated retinas whereas the administration of H-1152P significantly reduced the extent of these events. Conclusion: H-1152P exerted a neuroprotective effect against necrosis on the isolated bovine retina under hypoxia together with a reduction in glial cell reactivity. However, the inhibitor could not prevent the hypoxia induced retinal dysfunction possibly due to the interference with synaptic modulation.
Background: Dye solutions such as indocyanine green (ICG) are used for the staining of intraocular structures. The aim of the presented study was to investigate the effects of ICG on bovine retinal function using different concentrations of ICG. Methods: Bovine retina preparations were perfused with a standard solution and the electroretinogram was recorded. The nutrient solution was substituted by an ICG solution at varying concentrations for 45 min. Afterwards the preparations were reperfused with standard solution for at least 85 min. Results: Significant reductions in b-wave amplitude were found for concentrations of 0.0025% (p = 0.0099) and 0.025% (p = 0.0378). For the concentration of 0.025%, the b-wave amplitude remained significantly decreased (p = 0.0082) after the observation period, but a full recovery of the b-wave was observed for the concentration of 0.0025% (p = 0.1917). Conclusion: Intraocular application of sufficient ICG concentrations for internal limiting membrane staining seems not possible without interfering with retinal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.