Background Indoor exposure to fine particulate matter (PM2.5) from outdoor sources is a major health concern, especially in highly polluted developing countries, such as China. Few studies have evaluated the effectiveness of indoor air purification on the improvement of cardiopulmonary health in these areas. Objectives To evaluate whether a short-term indoor air purifier intervention improves cardiopulmonary health. Methods We conducted a randomized double-blind crossover trial among 35 healthy college students in Shanghai, China in 2014. These students lived in dormitories that were randomized into 2 groups and alternated the use of true or sham air purifiers for 48 h with a 2-week washout interval. We measured 14 circulating biomarkers of inflammation, coagulation and vasoconstriction, lung function, blood pressure (BP), and fractional exhaled nitric oxide (FeNO). We applied linear mixed-effect models to evaluate the effect of the intervention on health outcome variables. Results On average, air purification resulted in a 57% reduction in PM2.5 concentration from 96.2 to 41.3 μg/m3 within hours of operation. Air purification was significantly associated with decreases in geometric means of several circulating inflammatory and thrombogenic biomarkers, including 17.5% in monocyte chemoattractant protein-1, 68.1% in interleukin-1β, 32.8% in myeloperoxidase and 64.9% in soluble CD40 ligand. Further, systolic BP, diastolic BP, and FeNO were significantly decreased by 2.7%, 4.8%, and 17.0% in geometric mean, respectively. The impacts on lung function and vasoconstriction biomarkers were beneficial, but not statistically significant. Conclusion This intervention study demonstrated clear cardiopulmonary benefits of indoor air purification among young, healthy adults in a Chinese city with severe ambient particulate air pollution. (Intervention Study on the Health Impact of Air Filters in Chinese Adults; NCT02239744)
B7-H4 (VTCN1, B7x ,B7s) is a ligand for inhibitory co-receptors on T cells implicated in antigenic tolerization. B7-H4 is expressed by tumor cells and tumor-associated macrophages (TAMs), but its potential contributions to tumoral immune escape and therapeutic targeting have been little studied. To interrogate B7-H4 expression on tumor cells, we analyzed fresh primary ovarian cancer cells collected from patient ascites and solid tumors, and established cell lines before and after in vivo passaging. B7-H4 expression was detected on the surface of all fresh primary human tumors and tumor xenotransplants, but not on most established cell lines, and B7-H4 was lost rapidly by tumor xenograft cells after short-term in vitro culture. These results indicated an in vivo requirement for B7-H4 induction and defined conditions for targeting studies. To generate anti-B7-H4 targeting reagents, we isolated antibodies by differential cell screening of a yeast-display scFv library derived from ovarian cancer patients. We identified anti-B7-H4 scFv that reversed in vitro inhibition of CD3-stimulated T cells by B7-H4 protein. Notably, these reagents rescued tumor antigen-specific T cell activation which was otherwise inhibited by co-culture with antigen-loaded B7-H4+ APCs, B7-H4+ tumor cells or B7-H4- tumor cells mixed with B7-H4+ TAMs; peritoneal administration of anti-B7-H4 scFv delayed the growth of established tumors. Together, our findings showed that cell surface expression of B7-H4 occurs only on tumors in vivo, and that antibody binding of B7-H4 could restore anti-tumor T cell responses. We suggest that blocking of B7-H4/B7-H4 ligand interactions may represent a feasible therapeutic strategy for ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.