Photothermal therapy (PTT), as an important noninvasive and effective tumor treatment method, has been extensively developed into a powerful cancer therapeutic technique. Nevertheless, the low photothermal conversion efficiency and the limited tissue penetration of typical photothermal therapeutic agents in the first near-infrared (NIR-I) region (700-950 nm) are still the major barriers for further clinical application. Here, we proposed an organic/inorganic dual-PTT agent of synergistic property driven by polydopamine-modified black-titanium dioxide (b-TiO 2 @PDA) with excellent photoconversion efficiency in the second NIR (NIR-II) region (1000-1500 nm). More specifically, the b-TiO 2 treated with sodium borohydride produced excessive oxygen vacancies resulting in oxygen vacancy band that narrowed the b-TiO 2 band gap, and the small band gap led to NIR-II region wavelength (1064 nm) absorbance. Furthermore, the combination of defect energy level trapping carrier recombination heat generation and conjugate heat generation mechanism, significantly improved the photothermal performance of the PTT agent based on b-TiO 2 . The photothermal properties characterization indicated that the proposed dual-PTT agent possesses excellent photothermal performance and ultra-high photoconversion efficiency of 64.9% under 1064 nm laser irradiation, which can completely kill esophageal squamous cells. Meanwhile, Gd 2 O 3 nanoparticles, an excellent magnetic resonance imaging (MRI) agent, were introduced into the nanosystem with similar dotted core-shell structure to enable the nanosystem achieve real-time MRI-monitored cancer therapeutic performance. We believe that this integrated nanotherapeutic system can not only solve the application of PTT in the NIR-II region, but also provide certain theoretical guidance for the clinical diagnosis and treatment of esophageal cancer.
In order to solve the problem of the effect of CT images on the diagnosis of lungs, the authors proposed a method for the diagnosis of invasive mucinous adenocarcinoma of the lungs based on CT radiomic features, and the modified method is found by reviewing past cases: among the 34 cases of primary pulmonary lymphoma, 12 cases were nodular mass type, 19 cases were nonnodular mass type, and 3 cases were mixed type; 13 cases involved bilateral lung lobes, 7 cases involved right lung, and 4 cases involved left lung example. There were 17 cases of tumor consolidation density shadow, 17 cases of mixed density shadow, the average CT value was about 32HU, 15 cases of cavitation sign, 6 cases of cavity, 9 cases of angiography sign, 30 cases of air bronchus sign, 22 cases of bronchiectasis, bronchial stenosis or amputation in 8 cases, pleural effusion in 12 cases, lymph node enlargement in 15 cases, and pleural metastasis in 2 cases. The final pathological results included 24 cases of membrane-associated lymphoid tissue (MALT) lymphoma, 9 cases of diffuse large B-cell lymphoma (DLBCL), and 1 case of T-cell lymphoma. The CT manifestations of primary pulmonary lymphoma (PPL) are diverse and do not have obvious specificity, the imaging manifestations are correlated with pathological types, and air bronchial signs, bronchiectasis, angiography signs, and other signs are used for the diagnosis of PPL. This is of great significance for the diagnosis of PPL.
Objective. The study aimed to investigate the predictive classification accuracy of computer semiautomatic segmentation algorithm for the histological grade of breast tumors through the magnetic resonance imaging (MRI) examination. Methods. Five dynamic contrast-enhanced (DCE) MRI regions of interest (ROIs) were captured using computer semiautomatic segmentation method, referring to the entire tumor area, tumor border area, proximal gland area, middle gland area, and distal gland area. According to the mutual information maximum protocol, the corresponding five ROIs were extracted from diffusion weighted imaging (DWI) combined with DCE-MRI images. To use the features in the nonoverlapping area of DWI image and DCE-MRI image as elements, a single-variable logistic regression model was established corresponding to element characteristics. After multiple training, the model was evaluated using the receiver operating characteristic (ROC) curve and area under curve (AUC). Results. This DCE-MRI combined with DWI was superior to DCE-MRI and DW in the prediction of tumor area features. To use DCE-MRI or DWI alone was less effective than DCE-MRI combined with DWI. The DWI combined DCE-MRI demonstrated good regional segmentation effects in the tumour area, with luminal A value being 0.767 and the area under curve (AUC) value being 0.758. After optimization, the AUC value of the tumor area was 0.929, indicating that classification effects can be enhanced by combining the two imaging methods, which complemented each other. Conclusions. The DWI combined DCE-MRI imaging has improved the early diagnosis effects of breast cancer by predicting the occurrence of breast cancer through the labeling of biomarkers.
In order to improve the detection rate of carotid atherosclerotic plaque in patients with essential hypertension and provide a reliable basis for the follow-up treatment of patients, magnetic resonance imaging (MRI) was used to predict the stability of carotid atherosclerotic plaque in patients with essential hypertension. A total of 77 patients with essential hypertension in XXX hospital from June 2015 to December 2015 were included in the study (including 49 males and 28 females). The patients were divided into stable plaque group and unstable plaque group according to their pathological plaque status. First, MRI was performed and imaging data were recorded, including intraplaque bleeding, fibrous cap status, carotid artery remodeling index, thickest layer of plaque, and the degree of luminal stenosis in both groups. Second, patients in both groups were followed up for three years, during which time MRI was reperformed every six months, and the time required for changes in the carotid artery indicators in the two groups was compared with the Log Rank test. Third, multivariate Logistic regression model was used to analyze the correlation between plaque stability and gender, family history of cardiovascular disease, body mass index, and basic characteristics of hypertension course. The results showed that the number of IPH and fibrous cap rupture in the unstable plaque group was significantly higher than that in the stable plaque group (P < 0.05). The Log Rank test showed that the time required for the change of carotid artery plaque morphology in the stable plaque group was significantly lower than that in the unstable plaque group (P < 0.05). Besides, plaque stability was significantly positively correlated with gender and hypertension course (P < 0.05), but was not significantly correlated with family history of cardiovascular disease and body mass index (P > 0.05). Therefore, the plaque data of patients can be obtained based on MRI, so as to evaluate the stable status of patients’ plaque and predict the long-term status of patients, which provides an experimental scheme for the future clinical prediction of the plaque status of essential hypertension carotid atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.