With the rapid development of 5G era, the number of messages on the network has increased sharply. The traditional opportunistic networks algorithm has some shortcomings in processing data. Most traditional algorithms divide the nodes into communities and then perform data transmission according to the divided communities. However, these algorithms do not consider enough nodes’ characteristics in the communities’ division, and two positively related nodes may divide into different communities. Therefore, how to accurately divide the community is still a challenging issue. We propose an efficient data transmission strategy for community detection (EDCD) algorithm. When dividing communities, we use mobile edge computing to combine network topology attributes with social attributes. When forwarding the message, we select optimal relay node as transmission according to the coefficients of channels. In the simulation experiment, we analyze the efficiency of the algorithm in four different real datasets. The results show that the algorithm has good performance in terms of delivery ratio and routing overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.