Motor skill learning requires the involvement and integration of several cortical and subcortical regions. In this study, we focus on how the functional connectivity of cortical networks changes with the acquisition of a novel motor skill. Using functional magnetic resonance imaging, we measured the localized blood oxygenation level-dependent (BOLD) signal in cortical regions while subjects performed a bimanual serial reaction time task under 2 conditions: 1) explicitly learning a novel sequence (NOVEL) and 2) playing a previously learned sequence (LEARNED). To investigate stages of learning, each condition was further divided into nonoverlapping early and late conditions. Functional connectivity was measured using a task-specific low-frequency coherence analysis of the data. We show that within the cortical motor network, the sensorimotor cortex, premotor cortex, and supplementary motor area have significantly greater inter- and intrahemispheric coupling during the early NOVEL condition compared with the late NOVEL condition. Additionally, we observed greater connectivity between frontal regions and cortical motor regions in the early versus late NOVEL contrast. No changes in functional connectivity were observed in the LEARNED condition. These results demonstrate that the functional connectivity of the cortical motor network is modulated with practice and suggest that early skill learning is mediated by enhanced interregional coupling.
While pediatric orbital tumors are most often managed in tertiary care centers, clinicians should be aware of the signs of intraocular and orbital neoplasms. In the pediatric population, a delay in diagnosis of orbital and intraocular lesions, even if benign, can lead to vision loss and deformity. Intraocular lesions reviewed are retinoblastoma, medulloepithelioma, and retinal astrocytic hamartoma. Orbital neoplasms reviewed are rhabdomyosarcoma, neuroblastoma metastases, optic pathway glioma, plexiform neurofibroma, leukemia, lymphoprolipherative disease, orbital inflammatory syndrome, dermoid and epidermoid inclusion cysts, and Langerhans' cell histiocytosis. Vascular lesions reviewed are infantile hemangioma and venous lymphatic malformation. In conjunction with clinical examination, high-resolution ophthalmic imaging and radiologic imaging play an important role in making a diagnosis and differentiating between benign and likely malignant processes. The radiologic imaging characteristics of these lesions will be discussed to facilitate prompt diagnosis and treatment. The current treatment modalities and management of tumors will also be reviewed.
Initially developed in 1993, the American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) lexicon serves to standardize breast imaging reports, improve communication with referring physicians, and provide a quality assurance tool. The long-awaited BI-RADS fifth edition consolidates, improves, and expands the lexicon for mammography, breast ultrasonography (US), and breast magnetic resonance (MR) imaging. The new edition has increased the number of imaging examples to nearly 600. The breast MR imaging lexicon is significantly expanded since it first appeared in the fourth edition. New terms have been added to the US lexicon to reflect technologic advances. Minor but important changes have been made to the mammography section. Calcification descriptors in the lexicon are now consolidated into two categories: benign and suspicious. The controversial "intermediate concern" grouping has been eliminated, and a table in the lexicon summarizes the literature supporting the recommendation to biopsy such calcifications. New descriptors such as "developing asymmetry" are illustrated, and abstracts are provided to reference their significance. A generous guidance section is included after the lexicon description for each modality. Useful frequently asked questions are succinctly answered, and the literature to support each answer is included in the reference section for each modality. This review article illustrates and highlights changes to the BI-RADS lexicon and provides readers with a general overview to familiarize them with the fifth edition. (©)RSNA, 2016.
Object. Stringent geometrical accuracy and precision are required in the stereotactic radiosurgical treatment of patients. Accurate targeting is especially important when treating a patient in a single fraction of a very high radiation dose (90 Gy) to a small target such as that used in the treatment of trigeminal neuralgia (3 to 4—mm diameter). The purpose of this study was to determine the inaccuracies in each step of the procedure including imaging, fusion, treatment planning, and finally the treatment. The authors implemented a detailed quality-assurance program. Methods. Overall geometrical accuracy of the Novalis stereotactic system was evaluated using a Radionics Geometric Phantom Chamber. The phantom has several magnetic resonance (MR) and computerized tomography (CT) imaging—friendly objects of various shapes and sizes. Axial 1-mm-thick MR and CT images of the phantom were acquired using a T1-weighted three-dimensional spoiled gradient recalled pulse sequence and the CT scanning protocols used clinically in patients. The absolute errors due to MR image distortion, CT scan resolution, and the image fusion inaccuracies were measured knowing the exact physical dimensions of the objects in the phantom. The isocentric accuracy of the Novalis gantry and the patient support system was measured using the Winston—Lutz test. Because inaccuracies are cumulative, to calculate the system's overall spatial accuracy, the root mean square (RMS) of all the errors was calculated. To validate the accuracy of the technique, a 1.5-mm-diameter spherical marker taped on top of a radiochromic film was fixed parallel to the x–z plane of the stereotactic coordinate system inside the phantom. The marker was defined as a target on the CT images, and seven noncoplanar circular arcs were used to treat the target on the film. The calculated system RMS value was then correlated with the position of the target and the highest density on the radiochromic film. The mean spatial errors due to image fusion and MR imaging were 0.41 ± 0.3 and 0.22 ± 0.1 mm, respectively. Gantry and couch isocentricities were 0.3 ± 0.1 and 0.6 ± 0.15 mm, respectively. The system overall RMS values were 0.9 and 0.6 mm with and without the couch errors included, respectively (isocenter variations due to couch rotation are microadjusted between couch positions). The positional verification of the marker was within 0.7 ± 0.1 mm of the highest optical density on the radiochromic film, correlating well with the system's overall RMS value. The overall mean system deviation was 0.32 ± 0.42 mm. Conclusions. The highest spatial errors were caused by image fusion and gantry rotation. A comprehensive quality-assurance program was developed for the authors' stereotactic radiosurgery program that includes medical imaging, linear accelerator mechanical isocentricity, and treatment delivery. For a successful treatment of trigeminal neuralgia with a 4-mm cone, the overall RMS value of equal to or less than 1 mm must be guaranteed.
Object. Stringent geometrical accuracy and precision are required in the stereotactic radiosurgical treatment of patients. Accurate targeting is especially important when treating a patient in a single fraction of a very high radiation dose (90 Gy) to a small target such as that used in the treatment of trigeminal neuralgia (3 to 4—mm diameter). The purpose of this study was to determine the inaccuracies in each step of the procedure including imaging, fusion, treatment planning, and finally the treatment. The authors implemented a detailed quality-assurance program. Methods. Overall geometrical accuracy of the Novalis stereotactic system was evaluated using a Radionics Geometric Phantom Chamber. The phantom has several magnetic resonance (MR) and computerized tomography (CT) imaging—friendly objects of various shapes and sizes. Axial 1-mm-thick MR and CT images of the phantom were acquired using a T1-weighted three-dimensional spoiled gradient recalled pulse sequence and the CT scanning protocols used clinically in patients. The absolute errors due to MR image distortion, CT scan resolution, and the image fusion inaccuracies were measured knowing the exact physical dimensions of the objects in the phantom. The isocentric accuracy of the Novalis gantry and the patient support system was measured using the Winston—Lutz test. Because inaccuracies are cumulative, to calculate the system's overall spatial accuracy, the root mean square (RMS) of all the errors was calculated. To validate the accuracy of the technique, a 1.5-mm-diameter spherical marker taped on top of a radiochromic film was fixed parallel to the x–z plane of the stereotactic coordinate system inside the phantom. The marker was defined as a target on the CT images, and seven noncoplanar circular arcs were used to treat the target on the film. The calculated system RMS value was then correlated with the position of the target and the highest density on the radiochromic film. The mean spatial errors due to image fusion and MR imaging were 0.41 ± 0.3 and 0.22 ± 0.1 mm, respectively. Gantry and couch isocentricities were 0.3 ± 0.1 and 0.6 ± 0.15 mm, respectively. The system overall RMS values were 0.9 and 0.6 mm with and without the couch errors included, respectively (isocenter variations due to couch rotation are microadjusted between couch positions). The positional verification of the marker was within 0.7 ± 0.1 mm of the highest optical density on the radiochromic film, correlating well with the system's overall RMS value. The overall mean system deviation was 0.32 ± 0.42 mm. Conclusions. The highest spatial errors were caused by image fusion and gantry rotation. A comprehensive quality-assurance program was developed for the authors' stereotactic radiosurgery program that includes medical imaging, linear accelerator mechanical isocentricity, and treatment delivery. For a successful treatment of trigeminal neuralgia with a 4-mm cone, the overall RMS value of equal to or less than 1 mm must be guaranteed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.