In this paper, we bring together our efforts in identifying and understanding nonequilibrium phase segregation driven by active processes in the living cell, with special focus on the segregation of cell membrane components driven by active contractile stresses arising from cortical actomyosin. This also has implications for active segregation dynamics in membraneless regions within the cytoplasm and nucleus (3d). We formulate an active version of the Flory-Huggins theory that incorporates a contribution from fluctuating active stresses. Apart from knitting together some of our past theoretical work in a comprehensive narrative, we highlight some new results, and establish a correspondence with recent studies on Active Model B/B+. We point to the many unusual aspects of the dynamics of active phase segregation, such as (i) anomalous growth dynamics, (ii) coarsening accompanied by propulsion and coalescence of domains that exhibit nonreciprocal effects, (iii) segregation into mesoscale domains, (iv) emergence of a nonequilibrium phase segregated steady state characterised by strong macroscopic fluctuations (fluctuation dominated phase ordering (FDPO)), and (v) mesoscale segregation even above the equilibrium Tc. Apart from its implications for actively driven segregation of binary fluids, these ideas are at the heart of an Active Emulsion description of the lateral organisation of molecules on the plasma membrane of living cells, whose full molecular elaboration appears elsewhere.
In this paper, we bring together our efforts in identifying and understanding nonequilibrium phase segregation driven by active processes in the living cell, with special focus on the segregation of cell membrane components driven by active contractile stresses arising from cortical actomyosin. This also has implications for active segregation dynamics in membraneless regions within the cytoplasm and nucleus (3d). We formulate an active version of the Flory-Huggins theory that incorporates a contribution from fluctuating active stresses. Apart from knitting together some of our past theoretical work in a comprehensive narrative, we highlight some new results, and establish a correspondence with recent studies on Active Model B/B+. We point to the many unusual aspects of the dynamics of active phase segregation, such as (i) anomalous growth dynamics, (ii) coarsening accompanied by propulsion and coalescence of domains that exhibit nonreciprocal effects, (iii) segregation into mesoscale domains, (iv) emergence of a nonequilibrium phase segregated steady state characterised by strong macroscopic fluctuations (fluctuation dominated phase ordering (FDPO)), and (v) mesoscale segregation even above the equilibrium Tc. Apart from its implications for actively driven segregation of binary fluids, these ideas are at the heart of an Active Emulsion description of the lateral organisation of molecules on the plasma membrane of living cells, whose full molecular elaboration appears elsewhere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.