A substantial proportion of proven oil and gas reserves of the world is contained in the carbonate reservoir. It is estimated that about 60% of the world’s oil and 40% of gas reserves are confined in carbonate reservoirs. Exploration and development of hydrocarbons in carbonate reservoirs are much more challenging due to poor seismic imaging and reservoir heterogeneity caused by diagenetic changes. Evaluation of carbonate reservoirs has been a high priority for researchers and geoscientists working in the petroleum industry mainly due to the challenges presented by these highly heterogeneous reservoir rocks. It is essential for geoscientists, petrophysicists, and engineers to work together from initial phases of exploration and delineation of the pool through mature stages of production, to extract as much information as possible to produce maximum hydrocarbons from the field for the commercial viability of the project. In the absence of the well-log data, the properties are inferred from the inversion of seismic data alone. In oil and gas exploration and production industries, seismic inversion is proven as a tool for tracing the subsurface reservoir facies and their fluid contents. In this paper, seismic inversion demonstrates the understanding of lithology and includes the full band of frequency in our initial model to incorporate the detailed study about the basin for prospect evaluation. 3D seismic data along with the geological & petrophysical information and electrologs acquired from drilled wells are used for interpretation and inversion of seismic data to understand the reservoir geometry and facies variation including the distribution of intervening tight layers within the Miocene carbonate reservoir in the study area of Central Luconia. The out-come of the seismic post-stack inversion technique shows a better subsurface lithofacies and fluid distribution for delineation and detailed study of the reservoir.
A majority of remaining proven Oil & Gas reserves is contained by Carbonate reservoir, and much more complicated to explore as imaging of the Carbonate rocks is poor. In case of Carbonate data, seismic diffraction imaging has contributed to an enhancement in the quality of seismic but there is still lack of understanding the lithology and impedance contrast which can be defined by the seismic inversion. In contrast, to the conventional process, an integration of seismic inversion methods are necessary to understand the lithology and include the full band of frequency in our initial model to incorporate and detail study about the basin for prospect evaluation. In this paper, an integrated approch is developed for better deleniation of subsurface structure and lithologies. Seismic post stack inversion technique is applied to the Carbonate field to study Electroficies and lithofacies of subsurface strata for better and detail study of the reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.