The widespread availability of various peer-to-peer lending solutions is rapidly changing the landscape of financial services. Beside the natural advantages over traditional services, a relevant problem in the domain is to correctly assess the risk associated with borrowers. In contrast to traditional financial services industries, in peerto-peer lending the unsecured nature of loans as well as the relative novelty of the platforms make the assessment of risk a difficult problem. In this article we propose to use traditional machine learning methods enhanced with fuzzy set theory based transformation of data to improve the quality of identifying loans with high likelihood of default. We assess the proposed approach on a real-life dataset from one of the largest peer-to-peer platforms in Europe. The results demonstrate that (i) traditional classification algorithms show good performance in classifying borrowers, and (ii) their performance can be improved using linguistic data transformation.
The growing popularity of P2P lending has attracted more borrowers and lenders to the sector. With the growth in the popularity of P2P lending there have been many studies focusing on analyzing credit risk in P2P lending. However, the credit risk is only a part of the story. The higher interest rates are allocated to the riskier loans, and the higher interest rates may or may not in fact compensate for the defaults expected. Therefore, the profit of a loan depends on both the interest rate and the default probability. Since investors are ultimately concerned with return on investment, models should help investors to predict the profit as accurately as possible. We develop a model that predicts the expected profit of a loan using survival analysis based monthly default probability. Our approach extends previous profit scoring approaches, since it can be applied to any loan data set, including current data sets with many on-going loans.
In recent years, peer‐to‐peer (P2P) lending has been gaining popularity amongst borrowers and individual investors. This can mainly be attributed to the easy and quick access to loans and the higher possible returns. However, the risk involved in these investments is considerable, and for most investors, being nonprofessionals, this increases the complexity and the importance of investment decisions. In this study, we focus on generating optimal investment decisions to lenders for selecting loans. We treat the loan selection process in P2P lending as a portfolio optimization problem, with the aim being to select a set of loans that provide a required return while minimizing risk. In the process, we use internal rate of return as the measure of return. As the starting point of the model, we use machine‐learning algorithms to predict the default probabilities and calculate expected values for the loans based on historical data. Afterwards, we calculate the distance between loans using (i) default probabilities and, as a novel step, (ii) expected value. In the calculations, we utilize kernel functions to obtain similarity weights of loans as the input of the optimization models. Two optimization models are tested and compared on data from the popular P2P platform Lending Club. The results show that using the expected‐value framework yields higher return.
Predicting loan default in peer-to-peer (P2P) lending has been a widely researched topic in recent years. While one can identify a large number of contributions predicting loan default on primary market of P2P platforms, there is a lack of research regarding the assessment of analytical methods on secondary market transactions. Reselling investments offers a valuable alternative to investors in P2P market to increase their profit and to diversify. In this article, we apply machine learning algorithms to build classification models that can predict the success of secondary market offers. Using data from a leading European P2P platform, we found that random forests offer the best classification performance. The empirical analysis revealed that in particular two variables have significant impact on success in the secondary market: (i) discount rate and (ii) the number of days the loan had been in debt when it was put on the secondary market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.