ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling; however, it is unclear whether either ion channel is required for thermosensation in vivo. We show that mice lacking TRPM8 have severe behavioral deficits in response to cold stimuli. In thermotaxis assays of temperature gradient and two-temperature choice assays, TRPM8-deficient mice exhibit strikingly reduced avoidance of cold temperatures. TRPM8-deficient mice also lack behavioral response to cold-inducing icilin application and display an attenuated response to acetone, an unpleasant cold stimulus. However, TRPM8-deficient mice have normal nociceptive-like responses to subzero centigrade temperatures, suggesting the presence of at least one additional noxious cold receptor. Finally, we show that TRPM8 mediates the analgesic effect of moderate cooling after administration of formalin, a painful stimulus. Therefore, depending on context, TRPM8 contributes to sensing unpleasant cold stimuli or mediating the effects of cold analgesia.
The abilities to sense environmental and internal temperatures are required for survival, both for maintenance of homeostasis and for avoidance of tissue-damaging noxious temperatures. Vertebrates can sense external physical stimuli via specialized classes of neurons in the peripheral nervous system that project to the skin. Temperature-sensitive neurons can be divided into two classes: innocuous thermosensors (warm or cool) and noxious thermonociceptors (hot or cold). ThermoTRPs, a subset of the transient receptor potential family of ion channels, which are expressed in sensory nerve endings and in skin, respond to distinct thermal thresholds. In this review, we examine the extent to which thermoTRPs are responsible for providing a molecular basis for thermal sensation.
Basal tearing is crucial to maintaining ocular surface wetness. Corneal cold thermoreceptors sense small oscillations in ambient temperature and change their discharge accordingly. Deletion of the cold-transducing ion channel Transient receptor potential cation channel subfamily M member 8 (TRPM8) in mice abrogates cold responsiveness and reduces basal tearing without affecting nociceptor-mediated irritative tearing. Warming of the cornea in humans also decreases tearing rate. These findings indicate that TRPM8-dependent impulse activity in corneal cold receptors contributes to regulating basal tear flow.
) had drastically reduced cold responses and no menthol responses. In vivo, EGFPf-positive neurons marked a unique population of DRG neurons, a majority of which do not coexpress nociceptive markers. The fraction of DRG neurons expressing EGFPf was not altered under an inflammatory condition, although an increase in TRPV1-coexpressing neurons was observed. TRPM8EGFPf neurons project to the superficial layer I of the spinal cord, making distinct contacts when compared with peptidergic projections. At the periphery, TRPM8 EGFPf projections mark unique endings in the most superficial layers of epidermis, including bush/cluster endings of the mystacial pads. We show that TRPM8 expression functionally associates with cold sensitivity in cultured DRGs, and provide the first glimpses of the unique anatomical architecture of cold fibers in vivo.
Maintaining physiological pH is required for survival, and exposure to alkaline chemicals such as ammonia (smelling salts) elicits severe pain and inflammation through unknown mechanisms. TRPV1, the capsaicin receptor, is an integrator of noxious stimuli including heat and extracellular acidic pH. Here, we report that ammonia activates TRPV1, TRPA1 (another polymodal nocisensor), and other unknown receptor(s) expressed in sensory neurons. Ammonia and intracellular alkalization activate TRPV1 through a mechanism that involves a cytoplasmic histidine residue, not used by other TRPV1 agonists such as heat, capsaicin or low pH. Our studies show that TRPV1 detects both acidic and basic deviations from homeostatic pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.