Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising of exosomes, apoptotic bodies, and microvesicles. Of the extracellular vesicles, exosomes are the most widely sorted and extensively explored for their contents and function. The size of the nanovesicular structures (exosomes) range from 30 to 140 nm and are present in various biological fluids such as saliva, plasma, urine etc. These cargo-laden extracellular vesicles arise from endosome-derived multivesicular bodies and are known to carry proteins and nucleic acids. Exosomes are involved in multiple physiological and pathological processes, including cellular senescence. Exosomes mediate signaling crosstalk and play a critical role in cell–cell communications. Exosomes have evolved as potential biomarkers for aging-related diseases. Aging, a physiological process, involves a progressive decline of function of organs with a loss of homeostasis and increasing probability of illness and death. The review focuses on the classic view of exosome biogenesis, biology, and age-associated changes. Owing to their ability to transport biological information among cells, the review also discusses the interplay of senescent cell-derived exosomes with the aging process, including the susceptibility of the aging population to COVID-19 infections.
Cardiac stem cells (CSCs) play a vital role in cardiac remodeling. Uncontrolled hypertension leads to cardiac hypertrophy, followed by cardiac failure. Pathological remodeling is associated with enhanced oxidative stress. Decreased cardiac stem cell efficiency is speculated in heart diseases. Maintaining a healthy stem cell population is essential for preventing progressive cardiac remodeling. Some anti-hypertensive drugs are cardioprotective. However, the effect of these drugs on CSCs has not been investigated. Metoprolol is a cardioprotective anti-hypertensive agent. To examine whether metoprolol can prevent the deterioration of CSC efficiency, spontaneously hypertensive rats (SHRs) were treated with this drug, and the effects on stem cell function were evaluated. Six-month-old male SHRs were treated with metoprolol (50 mg × kgper day) for 2 months. The effectiveness of the treatment at reducing blood pressure and reducing hypertrophy was ensured, and the animals were killed. Cardiac stem cells were isolated from the atrial tissue, and the effect of metoprolol on stem cell migration, proliferation, differentiation, and survival was evaluated by comparing the treated SHRs with untreated SHRs and normotensive Wistar rats. Compared to the Wistar rats, the SHR rats presented with a decrease in stem cell migration and proliferation and an increase in intracellular oxidative stress and senescence. Treating SHRs with metoprolol increased CSC migration and proliferation potential and stemness retention. Cellular senescence and oxidative stress were reduced. The attributes of stem cells from the metoprolol-treated SHRs were comparable to those of the Wistar rats. The restoration of stem cell efficiency is expected to prevent hypertension-induced progressive cardiac remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.