Host-parasite relationships in experimental airborne tuberculosis. I. Preliminary studies in BCG-vaccinated and nonvaccinated animals. J. Bacteriol. 91:718-724. 1966.-Previous studies from this laboratory on immunogenicity and allergenicity of defatted mycobacterial vaccines involved subcutaneous challenge of guinea pigs and killing of the animals 6 weeks later to evaluate the amount of disease. This type of experiment has been discontinued in this laboratory in favor of an airborne challenge type of experiment, with the advantages that aniimals can be challenged with small numbers of bacilli by a natural route, and the number of primary lesions, the rate of spread from those lesions, and the rate of bacillary multiplication can be used to evaluate protection. Experiments to determine uniformity of infection showed that a fair degree of uniformity resulted when seven guinea pigs were exposed simultaneously, and were studied 3 weeks later to determine numbers of primary lesions and bacilli in the tissues. A less satisfactory degree of uniformity was obtained when more animals were exposed at one time. BCG-vaccinated and nonvaccinated animals were studied to determine the earliest time and the optimal time for killing the animals to detect the effects of vaccination. In guinea pigs, the degree of protection assessed by lesion counts is time-dependent, but the degree of protection assessed by viable counts of bacilli in the tissues was relatively constant 3 to 12 weeks after infection. Mice vaccinated subcutaneously with BCG were not protected against infection at any interval between 2 and 19 weeks. Guinea pigs vaccinated subcutaneously with the same lot of vaccine were protected as judged by counts of viable bacilli in the tissues 3 weeks after infection.
New approaches consisting of ‘multistage' vaccines against (TB) are emerging that combine early antigenic proteins with latency-associated antigens. In this study, HspX was tested for its potential to elicit both short- and long-term protective immune responses. HspX is a logical component in vaccine strategies targeting protective immune responses against primary infection, as well as against reactivation of latent infection, because as previously shown, it is produced during latency, and as our studies show, it elicits protection within 30 days of infection. Recent studies have shown that the current TB vaccine, bacilli Calmette-Guerin (BCG), does not induce strong interferon-γ T-cell responses to latency-associated antigens like HspX, which may be in part why BCG fails to protect against reactivation disease. We therefore tested HspX protein alone as a prophylactic vaccine and as a boost to BCG vaccination, and found that HspX purified from M. tuberculosis cell lysates protected mice against aerosol challenge and improved the protective efficacy of BCG when used as a booster vaccine. Native HspX was highly immunogenic and protective, in a dose-dependent manner, in both short- and long-term infection models. Based on these promising findings, HspX was produced as a recombinant protein in E. coli, as this would enable facile purification; however, recombinant HspX (rHspX) alone consistently failed to protect against aerosol challenge. Incubation of rHspX with mycobacterial cell lysate and re-purification following incubation restored the capacity of the protein to confer protection. These data suggest the possibility that the native form may chaperone an immunogenic and protective antigen that is mycobacteria-specific.
HLA-B-associated transcript 3 (BAT3), also known as Scythe or BAG6, is a nuclear protein implicated in the control of apoptosis and natural killer (NK) cell-dendritic cell (DC) interaction. We demonstrate that BAT3 modulates the immune response by regulating the function of macrophages. BAT3 is released by macrophages in vitro and it down-regulates nitric oxide and proinflammatory cytokines release in IFN-γ and LPS stimulated macrophages. Furthermore, Mycobacterium tuberculosis-derived protein ESAT-6 (Rv3875) induced transient increase in the expression and release of BAT3 in macrophages. We show that induction of apoptosis by ESAT-6 is dependent on the cleavage of BAT3 by caspase-3 and proteasomal degradation. Our results also indicate that BAT3 regulates ESAT-6-induced apoptosis by interacting with anti-apoptotic protein BCL-2. Taken together, the data suggest that BAT3 plays a role in the early immune response to M. tuberculosis infection and may be a key protein associated with the fate of antigen presenting cells during infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.