Although adeno-associated virus (AAV)-2 has a broad tissue-host range and can transduce a wide variety of tissue types, some cells, such as erythro-megakaryoblastoid cells, are non-permissive and appear to lack the AAV-2 receptor. However, limited studies have been reported with the related dependovirus AAV-3. We have previously cloned this virus, characterized its genome and produced an infectious clone. In this study, the gene for green fluorescent protein (GFP) was inserted into AAV-2-and AAV-3-based plasmids and recombinant viruses were produced. These viruses were then used to transduce haematopoietic cells and the transduction efficiencies were compared. In contrast to recombinant (r) AAV-2, rAAV-3 successfully transduced erythroid and megakaryoblastoid cells, although rAAV-2 was superior in transduction of lymphocyte-derived cell lines. Recently, it was reported that heparan sulphate can act as a receptor of AAV-2. The infectivity of rAAV-2 and rAAV-3 was tested with mutant cell lines of Chinese hamster ovary cells that were defective for heparin or heparan sulphate expression on the cell surface. There was no correlation between the ability of rAAV-2 or rAAV-3 to infect cells and the cell surface expression of heparan sulphate and, although heparin blocked both rAAV-2 and rAAV-3 transduction, the ID 50 of rAAV-3 was higher than that of rAAV-2. In addition, virus-binding overlay assays indicated that AAV-2 and AAV-3 bound different membrane proteins. These results suggest not only that there are different cellular receptors for AAV-2 and AAV-3, but that rAAV-3 vectors may be preferred for transduction of some haematopoietic cell types.
Evidence of infection or exposure to TTV appears to be common among blood donors in United States.
Recently heparan sulfate was proposed as the host cell receptor for the dependovirus, adeno-associated virus type 2 (AAV2). We show that although heparan sulfate on the cell surface may contribute to the binding of AAV2 to permissive cells, the amount of heparan sulfate on the cell surface as determined by flow cytometry using four different monoclonal antibodies does not correlate with AAV2 binding to cells or recombinant AAV2 transduction efficiency. Experiments with either mutant CHO cells or cells treated with chlorate to remove sulfate groups showed that sulfation was not absolutely required for infection or binding: in the absence of cell surface sulfation, recombinant AAV2 was still able to be transduced in previously permissive cells. Heparin is commonly used as a substitute in studies of the interaction between heparan sulfate and ligand, and we demonstrate that the binding affinity of AAV2/heparin is low, with a K(d) value of approximately 2.0 nM. A study of the direct interaction between AAV2 and artificial glycosaminoglycans showed that a high degree of sulfation on heparin was critical for the ability to bind AAV2 and compete rAAV2 transduction and that both O- and N-sulfate groups are required. Overall, our data suggest that, as has been shown for other viruses, the presence of a high-affinity AAV2 receptor mediates AAV2 infection in addition to the low-affinity heparan sulfate binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.