Systems deployed in mobile environments are typically characterized by intermittent connectivity and asynchronous sending/reception of data. To create effective mobile systems for such environments, it is essential to guarantee acceptable levels of timeliness between sending and receiving mobile users. In order to provide QoS guarantees in different application scenarios and contexts, it is necessary to model the system performance by incorporating the intermittent connectivity. Queueing Network Models (QNMs) offer a simple modeling environment, which can be used to represent various application scenarios, and provide accurate analytical solutions for performance metrics, such as system response time. In this paper, we provide an analytical solution regarding the end-to-end response time between users sending and receiving data by modeling the intermittent connectivity of mobile users with QNMs. We utilize the publish/subscribe (pub/sub) middleware as the underlying communication infrastructure for mobile users. To represent the user's connections/disconnections, we model and solve analytically an ON/OFF queueing system by applying a mean value approach. Finally, we validate our model using simulations with real-world workload traces. The deviations between the performance results foreseen by the analytical model and the ones provided by the simulator are shown to be less than 5% for a variety of scenarios.
Abstract. Web services orchestrations conventionally employ exhaustive comparison of runtime quality of service (QoS) metrics for decision making. The ability to incorporate more complex mathematical packages are needed, especially in case of workflows for resource allocation and queuing systems. By modeling such optimization routines as service calls within orchestration specifications, techniques such as linear programming can be conveniently invoked by non-specialist workflow designers. Leveraging on previously developed QoS theory, we propose the use of a high-level flexible query procedure for embedding optimizations in languages such as Orc. The Optima site provides an extension to the sorting and pruning operations currently employed in Orc. Further, the lack of an objective technique for consolidating QoS metrics is a problem in identifying suitable cost functions. We employ the analytical hierarchy process (AHP) to generate a total ordering of QoS metrics across various domains. With constructs for ensuring consistency over subjective judgements, the AHP provides a suitable technique for producing objective cost functions. Using the Dell Supply Chain example, we demonstrate the feasibility of decision making through optimization routines, specially when the control flow is QoS dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.