For an (oriented) graph [Formula: see text] on the vertex set [Formula: see text] (rooted at [Formula: see text]), Postnikov and Shapiro (Trans. Amer. Math. Soc. 356 (2004) 3109–3142) associated a monomial ideal [Formula: see text] in the polynomial ring [Formula: see text] over a field [Formula: see text] such that the number of standard monomials of [Formula: see text] equals the number of (oriented) spanning trees of [Formula: see text] and hence, [Formula: see text], where [Formula: see text] is the truncated Laplace matrix of [Formula: see text]. The standard monomials of [Formula: see text] correspond bijectively to the [Formula: see text]-parking functions. In this paper, we study a monomial ideal [Formula: see text] in [Formula: see text] having rich combinatorial properties. We show that the minimal free resolution of the monomial ideal [Formula: see text] is the cellular resolution supported on a subcomplex of the first barycentric subdivision [Formula: see text] of an [Formula: see text] simplex [Formula: see text]. The integer sequence [Formula: see text] has many interesting properties. In particular, we obtain a formula, [Formula: see text], with [Formula: see text] for [Formula: see text], [Formula: see text] and [Formula: see text] for [Formula: see text], similar to [Formula: see text].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.